56 research outputs found

    InstanceCollage: a tool for the particularization of collaborative IMS-LD scripts

    Get PDF
    Current research work in e-learning and more specifically in the field of CSCL (Computer Supported Collaborative Learning) deals with design of collaborative activities, according to computer-interpretable specifications, such as IMS Learning Design, and their posterior enactment using LMSs (Learning Management Systems). A script that describes such collaborative activities is typically designed beforehand in order to structure collaboration, and defines the features that determine the behavior of the LMS, for instance, the sequence of activities or the groups/role distribution. In CSCL settings, group management and composition are especially relevant and affect the chances of achieving the expected learning outcomes. This paper presents a software tool, named InstanceCollage, which aims at facilitating the configuration and population of groups for IMS-LD scripts created with the authoring tool Collage, and discusses the implications of the IMS-LD specification with respect to this task. InstanceCollage is designed to process collaboration scripts based on CLFPs (Collaborative Learning Flow Patterns). Using this type of patterns, InstanceCollage focuses on the importance of understanding the function of groups within the learning strategy of the script. This paper describes the approach taken in InstanceCollage to facilitate this understanding for non-expert users. Additionally, two case studies are presented, which represent complex authentic collaborative learning scenarios, as a proof of concept of the functionality of this tool. The case studies are also used to illustrate the requirements of group configuration tools and to show that InstanceCollage complies to such requirements

    COLLAGE: a collaborative Learning Design editor based on patterns

    Get PDF
    CSCL (Computer-Supported Collaborative Learning) constitutes a significant field that has drawn the attention of many researchers and practitioners (Dillenbourg, 2002). This domain is characterized by the coexistence of very different expectations, requirements, knowledge and interests posed by both collaborative learning practitioners and experts in information and communication technologies. In other words, CSCL is an intrinsically interdisciplinary field that implies a need for mutual understanding among the implied stakeholders. This need demands the active participation of all these stakeholders during the whole development cycle of CSCL solutions. Participatory Design (PD) approaches (Muller & Kuhn, 1993) propose a diversity of theories, practices, etc. with the goal of working directly with users and other stakeholders in the design of social systems. That is, PD methodologies define processes where users and developers work together during a certain period of time, while they identify the requirements of an application. In the CSCL case, it has been shown that it is not efficient enough to simply perform the identification and analysis of requirements for the development of CSCL solutions that support effective ways of learning. Collaborative learning practitioners also become active players in the process of customizing technological solutions to their particular needs in every learning situation. PD poses a new requirement that CSCL developers should tackle: how to obtain technological solutions for collaborative learning capable of being particularized/customized by practitioners that usually do not have technological skills

    Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts

    Get PDF
    9 páginas.Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease most usually caused by point mutations in tRNA genes encoded by mtDNA. Here, we report on how this mutation affects mitochondrial function in primary fibroblast cultures established from 2 patients with MELAS who harbored the A3243G mutation. Both mitochondrial respiratory chain enzyme activities and coenzyme Q(10) (CoQ) levels were significantly decreased in MELAS fibroblasts. A similar decrease in mitochondrial membrane potential was found in intact MELAS fibroblasts. Mitochondrial dysfunction was associated with increased oxidative stress and the activation of mitochondrial permeability transition (MPT), which triggered the degradation of impaired mitochondria. Furthermore, we found defective autophagosome elimination in MELAS fibroblasts. Electron and fluorescence microscopy studies confirmed a massive degradation of mitochondria and accumulation of autophagosomes, suggesting mitophagy activation and deficient autophagic flux. Transmitochondrial cybrids harboring the A3243G mutation also showed CoQ deficiency and increased autophagy activity. All these abnormalities were partially restored by CoQ supplementation. Autophagy in MELAS fibroblasts was also abolished by treatment with antioxidants or cyclosporine, suggesting that both reactive oxygen species and MPT participate in this process. Furthermore, prevention of autophagy in MELAS fibroblasts resulted in apoptotic cell death, suggesting a protective role of autophagy in MELAS fibroblasts.This work was supported by Ministerio de Sanidad, Spain, grants FIS PI080500 and FIS EC08/00076, and by Asociación de Enfermos de Patología Mitocondrial (AEPMI) and Fundación Española de Enfermedades Lisosomales (FEEL). M. de la Mata is the recipient of a fellowship from Colegio Oficial de Farmacéuticos de Sevilla. This group was founded by the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII).Peer reviewe

    A candidate super-Earth planet orbiting near the snow line of Barnard’s star

    Get PDF
    Barnard’s star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard’s star is also among the least magnetically active red dwarfs known and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imaging, astrometry and direct imaging, but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard’s star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard’s star, making it an excellent target for direct imaging and astrometric observations in the future. © 2018, Springer Nature Limited.The results are based on observations made with the CARMENES instrument at the 3.5-m telescope of the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain), funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union and the CARMENES Consortium members; the 90-cm telescope at the Sierra Nevada Observatory (Granada, Spain) and the 40-cm robotic telescope at the SPACEOBS observatory (San Pedro de Atacama, Chile), both operated by the Instituto de Astrofisica de Andalucia (IAA); and the 80-cm Joan Oro Telescope (TJO) of the Montsec Astronomical Observatory (OAdM), owned by the Generalitat de Catalunya and operated by the Institute of Space Studies of Catalonia (IEEC). This research was supported by the following institutions, grants and fellowships: Spanish MINECO ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, AYA2016-79425-C3-1-P, AYA2016-79245-C3-2-P, AYA2016-79425-C3-3-P, AYA2015-69350-C3-2-P, ESP2014-54362-P, AYA2014-56359-P, RYC-2013-14875; Generalitat de Catalunya/CERCA programme; Fondo Europeo de Desarrollo Regional (FEDER); German Science Foundation (DFG) Research Unit FOR2544, project JE 701/3-1; STFC Consolidated Grants ST/P000584/1, ST/P000592/1, ST/M001008/1; NSF AST-0307493; Queen Mary University of London Scholarship; Perren foundation grant; CONICYT-FONDECYT 1161218, 3180405; Swiss National Science Foundation (SNSF); Koshland Foundation and McDonald-Leapman grant; and NASA Hubble Fellowship grant HST-HF2-51399.001. J.T. is a Hubble Fellow

    Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers

    Get PDF
    Altres ajuts: European Alzheimer DNA BioBank, EADB; EU Joint Programme, Neurodegenerative Disease Research (JPND); Neurodegeneration research program of Amsterdam Neuroscience; Stichting Alzheimer Nederland; Stichting VUmc fonds; Stichting Dioraphte; JPco-fuND FP-829-029 (ZonMW projectnumber 733051061); Dutch Federation of University Medical Centers; Dutch Government (from 2007-2011); JPND EADB grant (German Federal Ministry of Education and Research (BMBF) grant: 01ED1619A); German Research Foundation (DFG RA 1971/6-1, RA1971/7-1, RA 1971/8-1); Grifols SA; Fundación bancaria 'La Caixa'; Fundació ACE; CIBERNED; Fondo Europeo de Desarrollo Regional (FEDER-'Una manera de hacer Europa'); NIH (P30AG066444, P01AG003991); Alzheimer Research Foundation (SAO-FRA), The Research Foundation Flanders (FWO), and the University of Antwerp Research Fund. FK is supported by a BOF DOCPRO fellowship of the University of Antwerp Research Fund; Siemens Healthineers; Valdecilla Biobank (PT17/0015/0019); Academy of Finland (338182); German Center for Neurodegenerative Diseases (DZNE); German Federal Ministry of Education and Research (BMBF 01G10102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434, 01GI0711); ZonMW (#73305095007); Health~Holland, Topsector Life Sciences & Health (PPP-allowance #LSHM20106); Hersenstichting; Edwin Bouw Fonds; Gieskes-Strijbisfonds; NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012); Swedish Alzheimer Foundation (AF-939988, AF-930582, AF-646061, AF-741361); Dementia Foundation (2020-04-13, 2021-04-17); Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALF 716681); Swedish Research Council (11267, 825-2012-5041, 2013-8717, 2015-02830, 2017-00639, 2019-01096); Swedish Research Council for Health, Working Life and Welfare (2001-2646, 2001-2835, 2001-2849, 2003-0234, 2004-0150, 2005-0762, 2006-0020, 2008-1229, 2008-1210, 2012-1138, 2004-0145, 2006-0596, 2008-1111, 2010-0870, 2013-1202, 2013-2300, 2013-2496); Swedish Brain Power, Hjärnfonden, Sweden (FO2016-0214, FO2018-0214, FO2019-0163); Alzheimer's Association Zenith Award (ZEN-01-3151); Alzheimer's Association Stephanie B. Overstreet Scholars (IIRG-00-2159); Alzheimer's Association (IIRG-03-6168, IIRG-09-131338); Bank of Sweden Tercentenary Foundation; Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-81392, ALFGBG-771071); Swedish Alzheimer Foundation (AF-842471, AF-737641, AF-939825); Swedish Research Council (2019-02075); Swedish Research Council (2016-01590); BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (024.004.012); Swedish Research Council (2018-02532); Swedish State Support for Clinical Research (ALFGBG-720931); Alzheimer Drug Discovery Foundation (ADDF), USA (201809-2016862); UK Dementia Research Institute at UCL; Swedish Research Council (#2017-00915); Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615); Swedish Alzheimer Foundation (#AF-742881); Hjärnfonden, Sweden (#FO2017-0243); Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986); National Institute of Health (NIH), USA, (#1R01AG068398-01); Alzheimer's Association 2021 Zenith Award (ZEN-21-848495); National Institutes of Health (R01AG044546, R01AG064877, RF1AG053303, R01AG058501, U01AG058922, RF1AG058501, R01AG064614); Chuck Zuckerberg Initiative (CZI).Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Disease: A Hitherto Unexplored Constraint on the Spread of Dogs (Canis lupus familiaris) in Pre-Columbian South America

    Get PDF
    Although debate continues, there is agreement that dogs (Canis lupus familiaris) were first domesticated in Eurasia, spreading from there to other parts of the world. However, while that expansion already extended as far as Europe, China, and North America by the early Holocene, dogs spread into (and south of) the tropics only much later. In South America, for example, the earliest well attested instances of their presence do not reach back much beyond 3000 cal. BC, and dogs were still absent from large parts of the continent – Amazonia, the Gran Chaco, and much of the Southern Cone – at European contact. Previous explanations for these patterns have focused on cultural choice, the unsuitability of dogs for hunting certain kinds of tropical forest prey, and otherwise unspecified environmental hazards, while acknowledging that Neotropical lowland forests witness high rates of canine mortality. Building on previous work in Sub-Saharan Africa (Mitchell 2015) and noting that the dog’s closest relatives, the grey wolf (C. lupus) and the coyote (C. latrans), were likewise absent from South and most of Central America in Pre- Columbian times, this paper explores instead the possibility that infectious disease constrained the spread of dogs into Neotropical environments. Four diseases are considered, all likely to be native and/or endemic to South America: canine distemper, canine trypanosomiasis, canine rangeliosis, and canine visceral leishmaniasis caused by infection with Leishmania amazonensis and L. colombiensis. The paper concludes by suggesting ways in which the hypothesis that disease constrained the expansion of dogs into South America can be developed further
    corecore