462 research outputs found

    New Reports of Exotic and Native Ambrosia and Bark Beetle Species (Coleoptera: Curculionidae: Scolytinae) From Ohio

    Get PDF
    In a 2007 survey of ambrosia and bark beetles (Coleoptera: Curculionidae: Scolytinae) along a transect in northeastern Ohio, we collected six exotic and three native species not previously reported from the state. These species include the exotic ambrosia beetles Ambrosiodmus rubricollis (Eichhoff), Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Xyleborus californicus Wood, Xyleborus pelliculosusEichhoff, and Xylosandrus crassiusculus (Motschulsky). The native ambrosia beetle Corthylus columbianus Hopkins, and the native bark beetles Dryocoetes autographus (Ratzeburg) and Hylastes tenuis Eichhoff are also reported from Ohio for the first time. Our study suggests a northward range expansion for five of the six exotic species including, X. crassiusculus, which is an important pest of nursery and orchard crops in the southeastern United States

    Significació etnomusicològica del professor Josep Crivillé i Bargalló (*1947; †2012). (Rellegir alguns dels seus textos des del record)

    Get PDF
    From different significant lectures of the Prof. Josep Crivillé i Bargalló, the author proposes his professional and personal profile in the subject of Ethnomusicology.A través de diferentes textos significativos del prof. Josep Crivillé i Bargalló, el autor pone de relieve la trayectoria profesional y personal de dicho profesor en el terreno de la Etnomusicología. [ca] Mitjançant diversos textos significatius del prof. Josep Crivillé i Bargalló, l’autor posa de relleu la trajectòria professional i personal de l’esmentat professor en l’àmbit de la Etnomusicologia

    Fluid pressure drops during stimulation of segmented faults in deep geothermal reservoirs

    Get PDF
    Hydraulic stimulation treatments required to produce deep geothermal reservoirs present the risk of generating induced seismicity. Understanding the processes that operate during the stimulation phase is critical for minimising and preventing the uncertainties associated with the exploitation of these reservoirs. It is especially important to understand how the phenomenon of induced seismicity is related to the pressurisation of networks of discrete fractures. In this study, we use the numerical simulator CFRAC to analyse pressure drops commonly observed during stimulation of deep geothermal wells. We develop a conceptual model of a fractured geothermal reservoir to analyse the conditions required to produce pressure drops and their consequences on the evolution of seismicity, fluid pressure, and fracture permeability throughout the system. For this, we combine two fracture sets, one able to be stimulated by shear-mode fracturing and another one able to be stimulated by opening-mode fracturing. With this combination, the pressure drop can be triggered by a seismic event in the shear-stimulated fracture that is hydraulically connected with an opening-mode fracture. Our results indicate that pressure drops are not produced by the new volume created by shear dilatancy, but by the opening of the conjugated tensile fractures. Finally, our results reveal that natural fracture/splay fracture interaction can potentially explain the observed pressure drops at the Rittershoffen geothermal site

    3DHIP-Calculator A New Tool to Stochastically Assess Deep Geothermal Potential Using the Heat-In-Place Method from Voxel-Based 3D Geological Models

    Get PDF
    The assessment of the deep geothermal potential is an essential task during the early phases of any geothermal project. The well-known 'Heat-In-Place' volumetric method is the most widely used technique to estimate the available stored heat and the recoverable heat fraction of deep geothermal reservoirs at the regional scale. Different commercial and open-source software packages have been used to date to estimate these parameters. However, these tools are either not freely available, can only consider the entire reservoir volume or a specific part as a single-voxel model, or are restricted to certain geographical areas. The 3DHIP-Calculator tool presented in this contribution is an open-source software designed for the assessment of the deep geothermal potential at the regional scale using the volumetric method based on a stochastic approach. The tool estimates the Heat-In-Place and recoverable thermal energy using 3D geological and 3D thermal voxel models as input data. The 3DHIP-Calculator includes an easy-to-use graphical user interface (GUI) for visualizing and exporting the results to files for further postprocessing, including GIS-based map generation. The use and functionalities of the 3DHIP-Calculator are demonstrated through a case study of the Reus-Valls sedimentary basin (NE, Spain)

    Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106-115

    Get PDF
    The ability of the cellular prion protein (PrPC) to bind copper in vivo points to a physiological role for PrPC in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrPC. Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting CuI and CuII binding properties. We have evaluated CuI coordination to the PrP(106-115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. CuI coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand; in the range of pH 5-8, both methionine (Met) residues bind to CuI, forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the chemical environment, such as those occurring during endocytosis of PrPC (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrPC to maintain the bound CuI ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant CuI-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper(II) superoxide complex. In this process, the Met residues are partially oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrPC. This study provides further insight into the CuI coordination properties of His111 in human PrPC and the molecular mechanism of oxygen activation by this site.Fil: Arcos López, Trinidad. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Qayyum, Munzarin. University of Stanford; Estados UnidosFil: Rivillas Acevedo, Lina. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Miotto, Marco César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina. Max Planck Laboratory for Structural Biology; ArgentinaFil: Grande Aztatzi, Rafael. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Fernandez, Claudio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina. Max Planck Laboratory for Structural Biology; ArgentinaFil: Hedman, Britt. University of Stanford; Estados UnidosFil: Hodgson, Keith O.. University of Stanford; Estados UnidosFil: Vela, Alberto. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; MéxicoFil: Solomon, Edward I.. University of Stanford; Estados UnidosFil: Quintanar, Liliana. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzado; Méxic
    corecore