58 research outputs found

    Unsupervised Frequency Tracking beyond the Nyquist Limit using Markov Chains

    Full text link
    This paper deals with the estimation of a sequence of frequencies from a corresponding sequence of signals. This problem arises in fields such as Doppler imaging where its specificity is twofold. First, only short noisy data records are available (typically four sample long) and experimental constraints may cause spectral aliasing so that measurements provide unreliable, ambiguous information. Second, the frequency sequence is smooth. Here, this information is accounted for by a Markov model and application of the Bayes rule yields the a posteriori density. The maximum a postariori is computed by a combination of Viterbi and descent procedures. One of the major features of the method is that it is entirely unsupervised. Adjusting the hyperparameters that balance data-based and prior-based information is done automatically by ML using an EM-based gradient algorithm. We compared the proposed estimate to a reference one and found that it performed better: variance was greatly reduced and tracking was correct, even beyond the Nyquist frequency

    Reconstruction 3D de vaisseaux à partir d'un faible nombre de projections à l'aide de contours déformables

    Get PDF
    Un contour actif, évoluant dans un processus stochastique, est proposé pour la reconstruction en tomographie d'images binaires. Une fonction de coût, formée d'un terme d'attachement aux données tomographiques et d'une fonction de régularisation, prenant en compte les artefacts inhérents à la reconstruction, est minimisée pour trouver la solution MAP optimale, dans un cadre Bayesien. La méthode, appliquée à la reconstruction des vaisseaux sanguins, est stable. Les résultats obtenus sur des simulations bruitées et sur des acquisitions sur fantômes sont prometteurs

    3D reconstruction of blood vessels by data fusion from angiographic and echographic images

    Get PDF
    Three-dimensional reconstruction of vascular lesions is of great medical interest for diagnosis and prognosis of the atheromateous disease, as well as for a better understanding of restenosis phenomena related to the revascularisation techniques. In order to provide a quantitative description of the geometry of complex atheromateous lesions, we propose an original approach for 3D vessel surface reconstruction, which relies on fusion of data obtained with both digital angiography and intravascular echography. This method is based on a first step consisting of a geometrical modelization of acquisitions and data, which yields a first rough reconstruction by geometrical fusion of the parameters extracted from the vessel contours obtained from both modalities which provides, by interpolation of echographic contours, the 3D surface of the vessel lumen . The next step consists in taking into account the imprecision on the parameters estimated during the first step. For this task, we propose an original method based on a modelization of parameters as fuzzy numbers which allows to introduce, through fuzzy mathematical morphology, the imprecision on the acquisitions and on the 3D data. This provides a 3D reconstruction which takes into account all data about the problem . The first results prove clearly the feasibility of the method and the interest of using information issued from different modalities for improving the 3D reconstruction of blood vessels, without any a priori mathematical model of vessel morphology. The explicite introduction of imprecisions in the fusion process allows to eliminate ambiguities and contradictions we would obtain in a simple reconstruction from only one modality, and leads to a decision about the true morphology of vessels.La reconstruction tridimensionnelle des lésions vasculaires présente un intérêt médical majeur pour le suivi diagnostique et pronostique de la maladie athéromateuse, ainsi que pour une meilleure compréhension des phénomènes de resténose associés aux techniques interventionnelles de revascularisation. Afin de fournir une meilleure description morphologique et quantitative des lésions athéromateuses complexes, nous proposons une approche originale de reconstruction 3D de la surface des vaisseaux, par la fusion de données issues d'angiographies numérisées et d'échographies endovasculaires. Cette méthode repose sur une première étape de modélisation géométrique des acquisitions et des données, qui débouche sur une première reconstruction par fusion géométrique des paramètres extraits des deux modalités et interpolation des contours échographiques. L'étape suivante consiste à prendre en compte l'imprécision sur les paramètres estimés lors de la première étape. Pour cela, nous proposons une méthode originale reposant sur la modélisation des paramètres sous forme de nombres flous et sur la morphologie mathématique floue, fournissant une reconstruction 3D prenant en compte toutes les données du problème. Les premiers résultats obtenus démontrent clairement la faisabilité de la méthode et l'intérêt d'exploiter les informations issues de différentes modalités pour améliorer la reconstruction 3D des vaisseaux sanguins, sans modèle mathématique a priori de la forme des vaisseaux. L'introduction explicite des imprécisions dans le processus de fusion permet d'éliminer les ambiguités et les contradictions qu'on aurait dans une reconstruction simple à partir d'une seule modalité et conduit à une décision sur la morphologie réelle des vaisseau

    Recurrent Neural Networks for Aortic Image Sequence Segmentation with Sparse Annotations

    Get PDF
    Segmentation of image sequences is an important task in medical image analysis, which enables clinicians to assess the anatomy and function of moving organs. However, direct application of a segmentation algorithm to each time frame of a sequence may ignore the temporal continuity inherent in the sequence. In this work, we propose an image sequence segmentation algorithm by combining a fully convolutional network with a recurrent neural network, which incorporates both spatial and temporal information into the segmentation task. A key challenge in training this network is that the available manual annotations are temporally sparse, which forbids end-to-end training. We address this challenge by performing non-rigid label propagation on the annotations and introducing an exponentially weighted loss function for training. Experiments on aortic MR image sequences demonstrate that the proposed method significantly improves both accuracy and temporal smoothness of segmentation, compared to a baseline method that utilises spatial information only. It achieves an average Dice metric of 0.960 for the ascending aorta and 0.953 for the descending aorta

    The STAFF-DWP wave instrument on the DSP equatorial spacecraft: description and first results

    Get PDF
    The STAFF-DWP wave instrument on board the equatorial spacecraft (TC1) of the Double Star Project consists of a combination of 2 instruments which are a heritage of the Cluster mission: the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment and the Digital Wave-Processing experiment (DWP). On DSP-TC1 STAFF consists of a three-axis search coil magnetometer, used to measure magnetic fluctuations at frequencies up to 4 kHz and a waveform unit, up to 10 Hz, plus snapshots up to 180 Hz. DWP provides several onboard analysis tools: a complex FFT to fully characterise electromagnetic waves in the frequency range 10 Hz-4 kHz, a particle correlator linked to the PEACE electron experiment, and compression of the STAFF waveform data. The complementary Cluster and TC1 orbits, together with the similarity of the instruments, permits new multi-point studies. The first results show the capabilities of the experiment, with examples in the different regions of the magnetosphere-solar wind system that have been encountered by DSP-TC1 at the beginning of its operational phase. An overview of the different kinds of electromagnetic waves observed on the dayside from perigee to apogee is given, including the different whistler mode waves (hiss, chorus, lion roars) and broad-band ULF emissions. The polarisation and propagation characteristics of intense waves in the vicinity of a bow shock crossing are analysed using the dedicated PRASSADCO tool, giving results compatible with previous studies: the broad-band ULF waves consist of a superimposition of different wave modes, whereas the magnetosheath lion roars are right-handed and propagate close to the magnetic field. An example of a combined Cluster DSP-TC1 magnetopause crossing is given. This first case study shows that the ULF wave power intensity is higher at low latitude (DSP) than at high latitude (Cluster). On the nightside in the tail, a first wave event comparison - in a rather quiet time interval - is shown. It opens the doors to future studies, such as event timing during substorms, to possibly determine their onset location

    Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: a cardiovascular magnetic resonance study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arterial stiffness is considered as an independent predictor of cardiovascular mortality, and is increasingly used in clinical practice. This study aimed at evaluating the consistency of the automated estimation of regional and local aortic stiffness indices from cardiovascular magnetic resonance (CMR) data.</p> <p>Results</p> <p>Forty-six healthy subjects underwent carotid-femoral pulse wave velocity measurements (<it>CF_PWV</it>) by applanation tonometry and CMR with steady-state free-precession and phase contrast acquisitions at the level of the aortic arch. These data were used for the automated evaluation of the aortic arch pulse wave velocity (<it>Arch_PWV</it>), and the ascending aorta distensibility (<it>AA_Distc, AA_Distb)</it>, which were estimated from ascending aorta strain (<it>AA_Strain</it>) combined with either carotid or brachial pulse pressure. The local ascending aorta pulse wave velocity <it>AA_PWVc </it>and <it>AA_PWVb </it>were estimated respectively from these carotid and brachial derived distensibility indices according to the Bramwell-Hill theoretical model, and were compared with the <it>Arch_PWV</it>. In addition, a reproducibility analysis of <it>AA_PWV </it>measurement and its comparison with the standard <it>CF_PWV </it>was performed. Characterization according to the Bramwell-Hill equation resulted in good correlations between <it>Arch_PWV </it>and both local distensibility indices <it>AA_Distc </it>(r = 0.71, p < 0.001) and <it>AA_Distb </it>(r = 0.60, p < 0.001); and between <it>Arch_PWV </it>and both theoretical local indices <it>AA_PWVc </it>(r = 0.78, p < 0.001) and <it>AA_PWVb </it>(r = 0.78, p < 0.001). Furthermore, the <it>Arch_PWV </it>was well related to <it>CF_PWV </it>(r = 0.69, p < 0.001) and its estimation was highly reproducible (inter-operator variability: 7.1%).</p> <p>Conclusions</p> <p>The present work confirmed the consistency and robustness of the regional index <it>Arch_PWV </it>and the local indices <it>AA_Distc and AA_Distb </it>according to the theoretical model, as well as to the well established measurement of <it>CF_PWV</it>, demonstrating the relevance of the regional and local CMR indices.</p

    Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Bramwell-Hill model describes the relation between vascular wall stiffness expressed in aortic distensibility and the pulse wave velocity (PWV), which is the propagation speed of the systolic pressure wave through the aorta. The main objective of this study was to test the validity of this model locally in the aorta by using PWV-assessments based on in-plane velocity-encoded cardiovascular magnetic resonance (CMR), with invasive pressure measurements serving as the gold standard.</p> <p>Methods</p> <p>Seventeen patients (14 male, 3 female, mean age ± standard deviation = 57 ± 9 years) awaiting cardiac catheterization were prospectively included. During catheterization, intra-arterial pressure measurements were obtained in the aorta at multiple locations 5.8 cm apart. PWV was determined regionally over the aortic arch and locally in the proximal descending aorta. Subsequently, patients underwent a CMR examination to measure aortic PWV and aortic distention. Distensibility was determined locally from the aortic distension at the proximal descending aorta and the pulse pressure measured invasively during catheterization and non-invasively from brachial cuff-assessment. PWV was determined regionally in the aortic arch using through-plane and in-plane velocity-encoded CMR, and locally at the proximal descending aorta using in-plane velocity-encoded CMR. Validity of the Bramwell-Hill model was tested by evaluating associations between distensibility and PWV. Also, theoretical PWV was calculated from distensibility measurements and compared with pressure-assessed PWV.</p> <p>Results</p> <p>In-plane velocity-encoded CMR provides stronger correlation (p = 0.02) between CMR and pressure-assessed PWV than through-plane velocity-encoded CMR (r = 0.69 versus r = 0.26), with a non-significant mean error of 0.2 ± 1.6 m/s for in-plane versus a significant (p = 0.006) error of 1.3 ± 1.7 m/s for through-plane velocity-encoded CMR. The Bramwell-Hill model shows a significantly (p = 0.01) stronger association between distensibility and PWV for local assessment (r = 0.8) than for regional assessment (r = 0.7), both for CMR and for pressure-assessed PWV. Theoretical PWV is strongly correlated (r = 0.8) with pressure-assessed PWV, with a statistically significant (p = 0.04) mean underestimation of 0.6 ± 1.1 m/s. This theoretical PWV-estimation is more accurate when invasively-assessed pulse pressure is used instead of brachial cuff-assessment (p = 0.03).</p> <p>Conclusions</p> <p>CMR with in-plane velocity-encoding is the optimal approach for studying Bramwell-Hill associations between local PWV and aortic distensibility. This approach enables non-invasive estimation of local pulse pressure and distensibility.</p

    Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography

    Get PDF
    International audienceBACKGROUND: Early detection of diastolic dysfunction is crucial for patients with incipient heart failure. Although this evaluation could be performed from phase-contrast (PC) cardiovascular magnetic resonance (CMR) data, its usefulness in clinical routine is not yet established, mainly because the interpretation of such data remains mostly based on manual post-processing. Accordingly, our goal was to develop a robust process to automatically estimate velocity and flow rate-related diastolic parameters from PC-CMR data and to test the consistency of these parameters against echocardiography as well as their ability to characterize left ventricular (LV) diastolic dysfunction. RESULTS: We studied 35 controls and 18 patients with severe aortic valve stenosis and preserved LV ejection fraction who had PC-CMR and Doppler echocardiography exams on the same day. PC-CMR mitral flow and myocardial velocity data were analyzed using custom software for semi-automated extraction of diastolic parameters. Inter-operator reproducibility of flow pattern segmentation and functional parameters was assessed on a sub-group of 30 subjects. The mean percentage of overlap between the transmitral flow segmentations performed by two independent operators was 99.7 ± 1.6%, resulting in a small variability ( 0.71) and receiver operating characteristic (ROC) analysis revealed their ability to separate patients from controls, with sensitivity > 0.80, specificity > 0.80 and accuracy > 0.85. Slight superiority in terms of correlation with echocardiography (r = 0.81) and accuracy to detect LV abnormalities (sensitivity > 0.83, specificity > 0.91 and accuracy > 0.89) was found for the PC-CMR flow-rate related parameters. CONCLUSIONS: A fast and reproducible technique for flow and myocardial PC-CMR data analysis was successfully used on controls and patients to extract consistent velocity-related diastolic parameters, as well as flow rate-related parameters. This technique provides a valuable addition to established CMR tools in the evaluation and the management of patients with diastolic dysfunction
    corecore