51 research outputs found

    A Voltage-Sensitive Dye-Based Assay for the Identification of Differentiated Neurons Derived from Embryonic Neural Stem Cell Cultures

    Get PDF
    BACKGROUND: Pluripotent and multipotent stem cells hold great therapeutical promise for the replacement of degenerated tissue in neurological diseases. To fulfill that promise we have to understand the mechanisms underlying the differentiation of multipotent cells into specific types of neurons. Embryonic stem cell (ESC) and embryonic neural stem cell (NSC) cultures provide a valuable tool to study the processes of neural differentiation, which can be assessed using immunohistochemistry, gene expression, Ca(2+)-imaging or electrophysiology. However, indirect methods such as protein and gene analysis cannot provide direct evidence of neuronal functionality. In contrast, direct methods such as electrophysiological techniques are well suited to produce direct evidence of neural functionality but are limited to the study of a few cells on a culture plate. METHODOLOGY/PRINCIPAL FINDINGS: In this study we describe a novel method for the detection of action potential-capable neurons differentiated from embryonic NSC cultures using fast voltage-sensitive dyes (VSD). We found that the use of extracellularly applied VSD resulted in a more detailed labeling of cellular processes compared to calcium indicators. In addition, VSD changes in fluorescence translated precisely to action potential kinetics as assessed by the injection of simulated slow and fast sodium currents using the dynamic clamp technique. We further demonstrate the use of a finite element model of the NSC culture cover slip for optimizing electrical stimulation parameters. CONCLUSIONS/SIGNIFICANCE: Our method allows for a repeatable fast and accurate stimulation of neurons derived from stem cell cultures to assess their differentiation state, which is capable of monitoring large amounts of cells without harming the overall culture

    Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells

    Get PDF
    AbstractThe Notch signaling pathway controls cell fate choices at multiple steps during cell lineage progression. To produce the cell fate choice appropriate for a particular stage in the cell lineage, Notch signaling needs to interpret the cell context information for each stage and convert it into the appropriate cell fate instruction. The molecular basis for this temporal context-dependent Notch signaling output is poorly understood, and to study this, we have engineered a mouse embryonic stem (ES) cell line, in which short pulses of activated Notch can be produced at different stages of in vitro neural differentiation. Activation of Notch signaling for 6h specifically at day 3 during neural induction in the ES cells led to significantly enhanced cell proliferation, accompanied by Notch-mediated activation of cyclin D1 expression. A reduction of cyclin-D1-expressing cells in the developing CNS of Notch signaling-deficient mouse embryos was also observed. Expression of a dominant negative form of cyclin D1 in the ES cells abrogated the Notch-induced proliferative response, and, conversely, a constitutively active form of cyclin D1 mimicked the effect of Notch on cell proliferation. In conclusion, the data define a novel temporal context-dependent function of Notch and a critical role for cyclin D1 in the Notch-induced proliferation in ES cells

    Acute treatment with valproic acid and L-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats

    Get PDF
    This work was supported by grants from the Swedish Research Council (MJ (K2008-66X-20776-01-4 and K2012-99X-20776-05-3)), OH (2011-3457) and GCB (K2011-80P-21816-01-4 and K2011-80X- 21817-01-4)), Harald and Greta Jeanssons Foundation (MJ), Swedish Association for Persons with Neurological Disabilities (MJ), ÅkeWibergs Foundation (MJ), Åke Löwnertz Foundation (MJ), Swedish Brain Foundation (MJ and GCB), David and Astrid Hagélen Foundation (GCB), Swedish Society for Medical Research (GCB), Swedish Society of Medicine (GCB), Socialstyrelsen (MJ), Karolinska Institutet funds (MJ and GCB), Marie Curie Integration Grant, Seventh Framework Programme, European Union (GCB, PCIG12-GA-2012-333713)), Neuropromise LSHM-CT-2005-018637 (MZA, HL) and Theme Center for Regenerative Medicine at Karolinska Institutet (OH)

    Recombinant Spider Silk Protein Matrices Facilitate Differentiation of Neural Stem Cells Into Mature and Functional Neurons

    Get PDF
    Neural stem cells (NSCs) show great promise in drug discovery and clinical application. Yet few efforts have been made to optimize biocompatible materials for such cells to be expanded and used in clinical conditions. We have previously demonstrated that NSCs are readily cultured on substrates of certain recombinant spider silk protein without addition of animal- or human-derived components. The question remains however whether this material allows differentiation into functional neurons, and whether such differentiation can take place also when the NSCs are cultured not only upon but also within the biodegradable material. Here we demonstrate that "foam"-like structures generated from recombinant spider silk protein (4RepCT) provided excellent matrices for the generation and multicellular analysis of functional excitatory neurons from NSCs without addition of animal- or human-derived components. NSCs isolated from the cerebral cortices of rat embryos were cultured at either 4RepCT matrices shaped as foam-like structures without coating, or on conventional polystyrene plates coated with poly-L-ornithine and fibronectin. Upon treatment with recombinant proteins including the extracellular signaling factor BMP4 or a combination of BMP4 and the signaling factor Wnt3a, the cortical NSCs cultured in 4RepCT foam-like structures differentiated efficiently into neurons that responded to glutamate receptor agonists, such as AMPA, to the same extent as control cultures. Matrices derived from recombinant spider silk proteins thus provide a functional microenvironment for neural stem cells with little or no animal- or human-derived components and can be employed in the development of new strategies in stem cell research and tissue engineering

    The novel BTB/POZ and zinc finger factor Zbtb45 is essential for proper glial differentiation of neural and oligodendrocyte progenitor cells

    No full text
    Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB/POZ-domain containing zinc finger factor Zbtb45 in the differentiation of NSCs and postnatal oligodendrocyte precursors. In situ hybridization histochemistry and RT-qPCR analysis revealed that Zbtb45 mRNA was ubiquitously expressed in the developing CNS in mouse embryos at embryonic day (E) 12.5 and 14.5. Zbtb45 mRNA knockdown in embryonic forebrain NSCs by siRNA resulted in a rapid decrease in the expression of oligodendrocyte-characteristic genes after mitogen (FGF2) withdrawal, whereas the expression of astrocyte-associated genes such as CD44 and GFAP increased compared to control. Accordingly, the number of astrocytes was significantly increased seven days after Zbtb45 siRNA delivery to NSCs, in contrast to the numbers of neuronal and oligodendrocyte-like cells. Surprisingly, mRNA knockdown of the Zbtb45-associated factor Med31, a subunit of the Mediator complex, did not result in any detectable effect on NSC differentiation. Similar to NSCs, Zbtb45 mRNA knockdown in oligodendrocyte precursors (CG-4) reduced oligodendrocyte maturation upon mitogen withdrawal associated with downregulation of the mRNA expression and protein levels of markers for oligodendrocytic differentiation. Zbtb45 mRNA knockdown did not significantly affect proliferation or cell death in any of the cell types. Based on these observations, we propose that Zbtb45 is a novel regulator of glial differentiation

    Modelling cell lineage using a meta-Boolean tree model with a relation to gene regulatory networks

    No full text
    A cell lineage is the ancestral relationship between a group of cells that originate from a single founder cell. For example, in the embryo of the nematode Caenorhabditis elegans an invariant cell lineage has been traced, and with this information at hand it is possible to theoretically model the emergence of different cell types in the lineage, starting from the single fertilized egg. In this report we outline a modelling technique for cell lineage trees, which can be used for the C. elegans embryonic cell lineage but also extended to other lineages. The model takes into account both cell-intrinsic (transcription factor-based) and -extrinsic (extracellular) factors as well as synergies within and between these two types of factors. The model can faithfully recapitulate the entire C. elegans cell lineage, but is also general, i.e., it can be applied to describe any cell lineage. We show that synergy between factors, as well as the use of extrinsic factors, drastically reduce the number of regulatory factors needed for recapitulating the lineage. The model gives indications regarding co-variation of factors, number of involved genes and where in the cell lineage tree that asymmetry might be controlled by external influence. Furthermore, the model is able to emulate other (Boolean, discrete and differential-equation-based) models. As an example, we show that the model can be translated to the language of a previous linear sigmoid-limited concentration-based model (Geard and Wiles, 2005). This means that this latter model also can exhibit synergy effects, and also that the cumbersome iterative technique for parameter estimation previously used is no longer needed. In conclusion, the proposed model is general and simple to use, can be mapped onto other models to extend and simplify their use, and can also be used to indicate where synergy and external influence would reduce the complexity of the regulatory process
    corecore