68 research outputs found

    Resolution of conflict between parental genomes in a hybrid species

    Get PDF
    AbstractThe development of reproductive barriers against parent species is crucial during hybrid speciation, and post-zygotic isolation can be important in this process. Genetic incompatibilities that normally isolate the parent species can become sorted in hybrids to form reproductive barriers towards either parent. However, the extent to which this sorting process is systematically biased and therefore predictable in which loci are involved and which alleles are favored is largely unknown. Theoretically, reduced fitness in hybrids due to the mixing of differentiated genomes can be resolved through rapid evolution towards allelic combinations ancestral to lineage-splitting of the parent species, as these alleles have successfully coexisted in the past. However, for each locus, this effect may be influenced by its chromosomal location, function, and interactions with other loci. We use the Italian sparrow, a homoploid hybrid species that has developed post-zygotic barriers against its parent species, to investigate this prediction. We show significant bias towards fixation of the ancestral allele among 57 nuclear intragenic SNPs, particularly those with a mitochondrial function whose ancestral allele came from the same parent species as the mitochondria. Consistent with increased pleiotropy leading to stronger fitness effects, genes with more protein-protein interactions were more biased in favor of the ancestral allele. Furthermore, the number of protein-protein interactions was especially low among candidate incompatibilities still segregating within Italian sparrows, suggesting that low pleiotropy allows steep intraspecific clines in allele frequencies to form. Finally, we report evidence for pervasive epistatic interactions within one Italian sparrow population, particularly involving loci isolating the two parent species but not hybrid and parent. However there was a lack of classic incompatibilities and no admixture linkage disequilibrium. This suggests that parental genome admixture can continue to constrain evolution and prevent genome stabilization long after incompatibilities have been purged.</jats:p

    Evidence for Mito-Nuclear and Sex-Linked Reproductive Barriers between the Hybrid Italian Sparrow and Its Parent Species

    Get PDF
    Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function ("mother's curse") at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread in the opposite direction to form barriers against Spanish sparrows

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Experimental evidence for ovarian hypofunction in sparrow hybrids

    Get PDF
    Background Postzygotic isolation in the form of reduced viability and/or fertility of hybrids may help maintain species boundaries in the face of interspecific gene flow. Past hybridization events between house sparrows (Passer domesticus) and Spanish sparrows (P. hispaniolensis) have given rise to a homoploid hybrid species, the Italian sparrow (P. italiae). Although genetic incompatibilities are known to isolate these three species, the biological consequences of these incompatibilities are still unknown in early generation hybrids. Methods We investigated whether F1 hybrids between house and Spanish sparrows experience reduced viability or fertility. More specifically, we generated hybrids through controlled crosses in aviaries, and compared ovaries of female hybrids with female of pure-species sparrows. Results We found that overall, hybrid ovaries were underdeveloped and that half of all female hybrids exhibited symptoms of ovarian hypofunction (ovarian atrophy and complete absence of developed follicles). Conclusions Fertility in hybrids is a common consequence or post-zygotic barriers between species. We discuss these results in light of previous findings on genetic incompatibilities between the parent species and the potential role of incompatibilities in hybrid speciation, a rare evolutionary process in birds

    Data from: Local adaptation within a hybrid species

    No full text
    Ecological divergence among populations may be strongly influenced by their genetic background. For instance, genetic admixture through introgressive hybridization or hybrid speciation is likely to affect the genetic variation and evolvability of phenotypic traits. We studied geographic variation in two beak dimensions and three other phenotypic traits of the Italian sparrow (Passer italiae), a young hybrid species formed through interbreeding between house sparrows (P. domesticus) and Spanish sparrows (P. hispaniolensis). We found that beak morphology was strongly influenced by precipitation regimes and that it appeared to be the target of divergent selection within Italian sparrows. Interestingly, however, the degree of parental genetic contribution in the hybrid species had no effect on phenotypic beak variation. Moreover, beak height divergence may mediate genetic differentiation between populations, consistent with isolation-by-adaptation within this hybrid species. The study illustrates how hybrid species may be relatively unconstrained by their admixed genetic background, allowing them to adapt rapidly to environmental variation

    Data from: Hybrid speciation in sparrows I: phenotypic intermediacy, genetic admixture and barriers to gene flow

    No full text
    Homoploid hybrid speciation is thought to require unusual circumstances to yield reproductive isolation from the parental species, and few examples are known from nature. Here we present genetic evidence for this mode of speciation in birds. Using Bayesian assignment analyses of 751 individuals genotyped for 14 unlinked, nuclear microsatellite loci, we show that the phenotypically intermediate Italian sparrow (Passer italiae) does not form a cluster of its own, but instead exhibits clear admixture (over its entire breeding range) between its putative parental species, the house sparrow (P. domesticus) and the Spanish sparrow (P. hispaniolensis). Further, the Italian sparrow possesses mitochondrial (mt) DNA haplotypes identical to both putative parental species (although mostly of house sparrow origin), indicating a recent hybrid origin. Today, the Italian sparrow has a largely allopatric distribution on the Italian peninsula and some Mediterranean islands separated from its suggested parental species by the Alps and the Mediterranean Sea, but occurs sympatrically with the Spanish sparrow on the Gargano peninsula in southeast Italy. No evidence of interbreeding was found in this sympatric population. However, the Italian sparrow hybridizes with the house sparrow in a sparsely populated contact zone in the Alps. Yet, the contact zone is characterized by steep clines in species-specific male plumage traits, suggesting that partial reproductive isolation may also have developed between these two taxa. Thus, geographic and reproductive barriers restrict gene flow into the nascent hybrid species. We propose that an origin of hybrid species where the hybrid lineage gets geographically isolated from the parental species, as seems to have happened here, might be more common in nature than previously assumed

    Input file for R analysis (phylogenetic tree, nexus format) from Macroevolutionary consequences of sexual conflict

    No full text
    File containing the phylogenetic tree (nexus format) used in the phylogenetic comparative analysis of intersexual trait integration

    Details of methods, ESM Figure 1, and ESM Table 1 from Macroevolutionary consequences of sexual conflict

    No full text
    Details of methods used in the paper, figure showing phylogenetic reconstruction, regime mapping and distribution of focal traits, and table of phenotypic data and static allometric slopes for the 30 Species of Diopsid Stalk-Eyed Flie

    Input file for R analysis (phenotypic data) from Macroevolutionary consequences of sexual conflict

    No full text
    File containing the phenotypic data used in the phylogenetic comparative analysis of intersexual trait integration. Convert to .xls before running script

    R script from Macroevolutionary consequences of sexual conflict

    No full text
    R script for doing the phylogenetic comparative analysis of intersexual trait integratio
    corecore