173 research outputs found

    Characterization of an invertebrate nicotinic acetylcholine receptor gene: The ard gene of Drosophila melanogaster

    Get PDF
    AbstractThe ard gene encodes a neuronal nicotinic acetylcholine receptor (AChR) protein from Drosophila (ARD protein). Cytogenetically this gene maps at position 64B/C on the left arm of the 3rd chromosome. Five introns interrupt the protein coding region of the gene, and one is found upstream of the translation start site. The ard gene thus contains less introns than vertebrate muscle AChR genes, but, with one exception, the positions of the resident introns are precisely conserved. Implications for the evolution of AChR genes are discussed

    Non-functional ubiquitin C-terminal hydrolase L1 drives podocyte injury through impairing proteasomes in autoimmune glomerulonephritis

    Get PDF
    In membranous nephropathy autoantibodies target podocytes of the kidney filter resulting in injury. Here the authors show that the ensuing proteostatic disturbances and proteinuria relate to aberrant interactions of non-functional UCH-L1 enzyme with the proteasome, curtailing its capacity.Little is known about the mechanistic significance of the ubiquitin proteasome system (UPS) in a kidney autoimmune environment. In membranous nephropathy (MN), autoantibodies target podocytes of the glomerular filter resulting in proteinuria. Converging biochemical, structural, mouse pathomechanistic, and clinical information we report that the deubiquitinase Ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced by oxidative stress in podocytes and is directly involved in proteasome substrate accumulation. Mechanistically, this toxic gain-of-function is mediated by non-functional UCH-L1, which interacts with and thereby impairs proteasomes. In experimental MN, UCH-L1 becomes non-functional and MN patients with poor outcome exhibit autoantibodies with preferential reactivity to non-functional UCH-L1. Podocyte-specific deletion of UCH-L1 protects from experimental MN, whereas overexpression of non-functional UCH-L1 impairs podocyte proteostasis and drives injury in mice. In conclusion, the UPS is pathomechanistically linked to podocyte disease by aberrant proteasomal interactions of non-functional UCH-L1.Bio-organic Synthesi

    Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick

    Get PDF
    Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Results One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities.</p

    ARD: Die cDNA fuer ein neuronales, entwicklungsspezifisch reguliertes Polypeptid des nikotinischen Acetylcholinrezeptors von Drosophila

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride

    No full text
    Fast synaptic inhibition in the adult central nervous system (CNS) is mediated by GABA and glycine. During early development GABA acts as an excitatory neurotransmitter, which is deemed to be important for the maturation of the CNS. During development GABAergic responses undergo a switch from excitatory to inhibitory. This switch is correlated with upregulation of KCC2, the neuronal isoform of the potassium-chloride cotransporter family. KCC2 lowers the intraneuronal chloride concentration below its electrochemical equilibrium. KCC2 activity is thought to depend on phosphorylation by endogenous tyrosine kinases. Here, we analyzed the expression pattern of KCC2 during murine embryonic and postnatal development by in situ hybridization and Western blot analysis. KCC2 expression paralleled neuronal differentiation and preceded the decline of the GABA reversal potential (EGABA) in spinal cord motoneurons and hippocampal pyramidal cells. The adult inhibitory response to GABA was established earlier in the spinal cord than in the hippocampus. Phosphorylated KCC2 protein was already present early in development when the functional GABA switch had not yet occurred. Thus, tyrosine-phosphorylation seems to be less important than the transcriptional upregulation of KCC2
    • …
    corecore