934 research outputs found

    The influence of holes in the mechanical properties of EWT solar cells

    Get PDF
    EWT back contact solar cells are manufactured from very thin silicon wafers. These wafers are drilled by means of a laser process creating a matrix of tiny holes with a density of approximately 125 holes per square centimeter. Their influence in the stiffness and mechanical strength has been studied. To this end, both wafers with and without holes have been tested with the ring on ring test. Numerical simulations of the tests have been carried out through the Finite Element Method taking into account the non-linearities present in the tests. It's shown that one may use coarse meshes without holes to simulate the test and after that sub models are used for the estimation of the stress concentration around the holes

    Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)

    Get PDF
    The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers

    Quantum Hall quasielectron operators in conformal field theory

    Full text link
    In the conformal field theory (CFT) approach to the quantum Hall effect, the multi-electron wave functions are expressed as correlation functions in certain rational CFTs. While this approach has led to a well-understood description of the fractionally charged quasihole excitations, the quasielectrons have turned out to be much harder to handle. In particular, forming quasielectron states requires non-local operators, in sharp contrast to quasiholes that can be created by local chiral vertex operators. In both cases, the operators are strongly constrained by general requirements of symmetry, braiding and fusion. Here we construct a quasielectron operator satisfying these demands and show that it reproduces known good quasiparticle wave functions, as well as predicts new ones. In particular we propose explicit wave functions for quasielectron excitations of the Moore-Read Pfaffian state. Further, this operator allows us to explicitly express the composite fermion wave functions in the positive Jain series in hierarchical form, thus settling a longtime controversy. We also critically discuss the status of the fractional statistics of quasiparticles in the Abelian hierarchical quantum Hall states, and argue that our construction of localized quasielectron states sheds new light on their statistics. At the technical level we introduce a generalized normal ordering, that allows us to "fuse" an electron operator with the inverse of an hole operator, and also an alternative approach to the background charge needed to neutralize CFT correlators. As a result we get a fully holomorphic CFT representation of a large set of quantum Hall wave functions.Comment: minor changes, publishe

    Efficient CSL Model Checking Using Stratification

    Get PDF
    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. Their proof can be turned into an approximation algorithm with worse than exponential complexity. In 2000, Baier, Haverkort, Hermanns and Katoen presented an efficient polynomial-time approximation algorithm for the sublogic in which only binary until is allowed. In this paper, we propose such an efficient polynomial-time approximation algorithm for full CSL. The key to our method is the notion of stratified CTMCs with respect to the CSL property to be checked. On a stratified CTMC, the probability to satisfy a CSL path formula can be approximated by a transient analysis in polynomial time (using uniformization). We present a measure-preserving, linear-time and -space transformation of any CTMC into an equivalent, stratified one. This makes the present work the centerpiece of a broadly applicable full CSL model checker. Recently, the decision algorithm by Aziz et al. was shown to work only for stratified CTMCs. As an additional contribution, our measure-preserving transformation can be used to ensure the decidability for general CTMCs.Comment: 18 pages, preprint for LMCS. An extended abstract appeared in ICALP 201

    Coercive field of ultrathin PbZr0.52Ti0.48O3 epitaxial films

    Get PDF
    The polarization reversal in single-crystalline ferroelectric films has been investigated experimentally and theoretically. The hysteresis loops were measured for Pb(Zr0.52Ti0.48)O-3 films with thicknesses ranging from 8 to 250 nm. These films were grown epitaxially on SrRuO3 bottom electrodes deposited on SrTiO3 substrates. The measurements using Pt top electrodes showed that the coercive field E-c increases drastically as the film becomes thinner, reaching values as high as E(c)approximate to1200 kV/cm. To understand this observation, we calculated the thermodynamic coercive field E-th of a ferroelectric film as a function of the misfit strain S-m in an epitaxial system and showed that E-th strongly depends on S-m. However, the coercive field of ultrathin films, when measured at high frequencies, exceeds the calculated thermodynamic limit. Since this is impossible for an intrinsic coercive field E-c, we conclude that measurements give an apparent E-c rather than the intrinsic one. An enormous increase of apparent coercive field in ultrathin films may be explained by the presence of a conductive nonferroelectric interface layer. (C) 2003 American Institute of Physics

    Spectral-analysis-surface-waves-method in ground characterization

    Get PDF
    The prediction of train induced vibration levels in structures close to railway tracks before track construction starts is important in order to avoid having to implement costly mitigation measures afterwards. The used models require an accurate characterization of the propagation medium i.e. the soil layers. To this end the spectral analysis of surface waves (SASW) method has been chosen among the active surface waves techniques available. As dynamic source a modal sledge hammer has been used. The generated vibrations have been measured at known offsets by means of several accelerometers. There are many parameters involved in estimating the experimental dispersion curve and, later on, thickness and propagation velocities of the different layers. Tests have been carried out at the Segovia railway station. Its main building covers some of the railway tracks and vibration problems in the building should be avoided. In the paper these tests as well as the influence of several parameters on the estimated soil profile will be detailed

    Sigref – A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information
    corecore