240 research outputs found

    EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS: HENSLOW’S SPARROW

    Get PDF
    were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the relative densities of the species in North America, based on Breeding Bird Survey (BBS) data. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America, including areas that could not be mapped using BBS data. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below

    EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS: HENSLOW’S SPARROW

    Get PDF
    were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the relative densities of the species in North America, based on Breeding Bird Survey (BBS) data. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America, including areas that could not be mapped using BBS data. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below

    04. Population Trends of Breeding Grassland Birds at Midewin National Tallgrass Prairie, 1985–2015

    Get PDF
    We use data from ongoing bird monitoring programs to assess long-term population trends at Midewin National Tallgrass Prairie in northeastern Illinois. Midewin is the nation’s first National Tallgrass Prairie and was established in 1996 on the site of the former Joliet Army Ammunition Plant. Annual bird monitoring began at the site in the early 1980s when it was discovered that the pastures and hayfields maintained by the Army contained significant grassland bird populations. Ninety-four species of breeding birds were recorded at the site between 2009 and 2015, including large populations of several grasslandobligate birds including dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), grasshopper sparrow (Ammodramus savannarum), bobolink (Dolichonyx oryzivorus), and Henslow’s sparrow (Ammodramus henslowii). Trend analyses showed that populations of bobolink, grasshopper sparrow, and savannah sparrow (Passerculus sandwichensis) were stable on the site between 1985 and 2015, whereas dickcissel and Henslow’s sparrow showed significant population increases during this interval. Three species declined significantly between 1985 and 2015: eastern meadowlark, upland sandpiper (Bartramia longicauda), and vesper sparrow (Pooecetes gramineus). The stable population trends for bobolink, grasshopper sparrow, and savannah sparrow contrast sharply with statewide and regional trends for these species, which show large population declines. The recent introduction of bison to the site may help provide the habitat structure needed to maintain large grassland bird populations at the site

    Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom

    Get PDF
    The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards

    Conservation of grassland birds in North America: understanding ecological processes in different regions

    Get PDF
    Many species of birds that depend on grassland or savanna habitats have shown substantial overall population declines in North America. To understand the causes of these declines, we examined the habitat requirements of birds in six types of grassland in different regions of the continent. Open habitats were originally maintained by ecological drivers (continual and pervasive ecological processes) such as drought, grazing, and fire in tallgrass prairie, mixed-grass prairie, shortgrass prairie, desert grassland, and longleaf pine savanna. By contrast, grasslands were created by occasional disturbances (e.g., fires or beaver [Castor canadensis] activity) in much of northeastern North America. The relative importance of particular drivers or disturbances differed among regions. Keystone mammal species grazers such as prairie-dogs (Cynomys spp.) and bison (Bison bison) in western prairies, and dam-building beavers in eastern regions of the continent. Deciduous forests played a crucial, and frequently unappreciated, role in maintaining many grassland systems. Although fire was important in preventing invasion of woody plants in the tallgrass and moist mixed prairies, grazing played a more important role in maintaining the typical grassland vegetation of shortgrass prairies and desert grasslands. Heavy grazing by prairiedogs or bison created a low \u27grazing lawn\u27 that is the preferred habitat for many grassland bird species that are restricted to the shortgrass prairie and desert grasslands. Ultimately, many species of grassland birds are vulnerable because people destroyed their breeding, migratory, and wintering habitat, either directly by converting it to farmland and building lots, or indirectly by modifying grazing patterns, suppressing fires, or interfering with other ecological processes that originally sustained open grassland. Understanding the ecological processes that originally maintained grassland systems is critically important for efforts to improve, restore, or create habitat for grassland birds and other grassland organisms. Consequently, preservation of large areas of natural or seminatural grassland, where these processes can be studied and core populations of grassland birds can flourish, should be a high priority. However, some grassland birds now primarily depend on artificial habitats that are managed to maximize production of livestock, timber, or other products. With a sound understanding of the habitat requirements of grassland birds and the processes that originally shaped their habitats, it should be possible to manage populations sustainably on \u27working land\u27 such as cattle ranches, farms, and pine plantations. Proper management of private land will be critical for preserving adequate breeding, migratory, and winter habitat for grassland and savanna species

    Upgrading the beam telescopes at the DESY II Test Beam Facility

    Get PDF
    The DESY II Test Beam Facility is a key infrastructure for modern high energy physics detector development, providing particles with a small momentum spread in a range from 1 to 6 GeV to user groups e.g. from the LHC experiments and Belle II as well as generic detector R&D. Beam telescopes are provided in all three test beam areas as precise tracking reference without time stamping, with triggered readout and a readout time of >115 ÎĽ\mus . If the highest available rates are used, multiple particles are traversing the telescopes within one readout frame, thus creating ambiguities that cannot be resolved without additional timing layers. Several upgrades are currently investigated and tested: Firstly, a fast monolithic pixel sensor, the TelePix, to provide precise track timing and triggering on a region of interest is proposed to overcome this limitation. The TelePix is a 180 nm HV-CMOS sensor that has been developed jointly by DESY, KIT and the University of Heidelberg and designed at KIT. In this publication, the performance evaluation is presented: The difference between two amplifier designs is evaluated. A high hit detection efficiency of above 99.9 % combined with a time resolution of below 4 ns at negligible pixel noise rates is determined. Finally, the digital hit output to provide region of interest triggering is evaluated and shows a short absolute delay with respect to a traditional trigger scintillator as well as an excellent time resolution. Secondly, a fast LGAD plane has been proposed to provide a time resolution of a few 10 ps, which is foreseen to drastically improve the timing performance of the telescope. Time resolutions of below 70 ps have been determined in collaboration with the University of California, Santa Barbara

    The MuPix high voltage monolithic active pixel sensor for the Mu3e experiment

    Get PDF
    Mu3e is a novel experiment searching for charged lepton flavor violation in the rare decay μ→eee\mu\rightarrow eee. In order to reduce background by up to 16 orders of magnitude, decay vertex position, decay time and particle momenta have to be measured precisely. A pixel tracker based on 50mm thin high voltage monolithic active pixel sensors (HV-MAPS) in a magnetic field will deliver precise vertex and momentum information. Test beam results like an excellent efficiency of > 99:5% and a time resolution of better than 16.6 ns obtained with the MuPix HV-MAPS chip developed for the Mu3e pixel tracker are presented
    • …
    corecore