222 research outputs found

    S-antigen and rod-opsin immunoreactions in midline brain neoplasms of transgenic mice: Similarities to pineal cell tumors and certain medulloblastomas in man.

    Get PDF
    Transgenic mice expressing the large T-antigen of the simian virus 40 (SV 40) under the control of 1) the enhancer of Moloney murine sarcoma virus (MSV) and 2) the SV 40 promoter develop undifferentiated neuroectodermal tumors located in the midline of the dorsal brain surface, abnormalities in lens fiber differentiation and retinal dysplasia. In this study the brain neoplasms of six adult animals and the brain of one 11-day old mouse were examined by conventional histology and immunocytochemical demonstration of S-antigen, rod-opsin, neuron-specific enolase, neurofilaments (160 and 200 kDa) and glial fibrillary acidic protein. According to histologic criteria the neoplasms were characterized as "primitive" neuroectodermal tumors composed mainly of small cells with scanty and ill-defined cytoplasm. Neoplastic cells displaying immunoreactive S-antigen were found in five brain tumors; three of these tumors also contained a limited number of rod-opsin immunoreactive neoplastic cells. Some tumor cells had neurite-like processes containing immunoreactive neurofilament (200 kDa). No pathologic lesions were found in the brain of the 11-day old animal. Tumors in transgenic mice may resemble pineal cell tumors and a special subtype of medulloblastoma in man. These neoplasms contain S-antigen immunoreactive and also rod-opsin immunoreactive tumors cells in certain cases. The findings suggest that transgenic mice expressing the large T-antigen of SV 40 may become a valuable animal model for analysing the origin, histogenesis and development of primitive neuroectodermal tumors with photoreceptor-like features (pineal cell tumors and certain medulloblastomas)

    On computational irreducibility and the predictability of complex physical systems

    Full text link
    Using elementary cellular automata (CA) as an example, we show how to coarse-grain CA in all classes of Wolfram's classification. We find that computationally irreducible (CIR) physical processes can be predictable and even computationally reducible at a coarse-grained level of description. The resulting coarse-grained CA which we construct emulate the large-scale behavior of the original systems without accounting for small-scale details. At least one of the CA that can be coarse-grained is irreducible and known to be a universal Turing machine.Comment: 4 pages, 2 figures, to be published in PR

    Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma

    Get PDF
    Immunohistochemical, cytochemical and ultrastructural data showing vivid angiogenesis and numerous mast cells (MCs) in the bone marrow of 24 patients with active multiple myeloma (MM) compared with 34 patients with non-active MM and 22 patients with monoclonal gammopathy of undetermined significance (MGUS) led us to hypothesize that angiogenesis parallels progression of MM, and that MCs participate in its induction via angiogenic factors in their secretory granules. © 1999 Cancer Research Campaig

    A Jurisprudential Analysis of Government Intervention and Prenatal Drug Abuse

    Get PDF
    This article takes a different approach in considering the problem of prenatal drug abuse. After briefly discussing government intervention and constitutional issues, this article will consider the concept of duty and correlative rights. This discussion of duty and correlative rights suggests that the government can take measures to curb prenatal drug use without recognizing fetal rights. The article concludes with a discussion of the utility of criminal legislation as compared to public health legislation that treats drug addiction as a disease requiring treatment. As formulated, the proposal for public health legislation is not based on any concept of fetal rights. Instead, it is based on the recognition of societal interests, as well as the woman’s needs

    Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine glutathione levels and antioxidant enzyme activities in the drug-naive first-episode patients with schizophrenia in comparison with healthy control subjects.</p> <p>Methods</p> <p>It was a case-controlled study carried on twenty-three patients (20 men and 3 women, mean age = 29.3 ± 7.5 years) recruited in their first-episode of schizophrenia and 40 healthy control subjects (36 men and 9 women, mean age = 29.6 ± 6.2 years). In patients, the blood samples were obtained prior to the initiation of neuroleptic treatments. Glutathione levels: total glutathione (GSHt), reduced glutathione (GSHr) and oxidized glutathione (GSSG) and antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) were determined by spectrophotometry.</p> <p>Results</p> <p>GSHt and reduced GSHr were significantly lower in patients than in controls, whereas GSSG was significantly higher in patients. GPx activity was significantly higher in patients compared to control subjects. CAT activity was significantly lower in patients, whereas the SOD activity was comparable to that of controls.</p> <p>Conclusion</p> <p>This is a report of decreased plasma levels of GSHt and GSHr, and impaired antioxidant enzyme activities in drug-naive first-episode patients with schizophrenia. The GSH deficit seems to be implicated in psychosis, and may be an important indirect biomarker of oxidative stress in schizophrenia early in the course of illness. Finally, our results provide support for further studies of the possible role of antioxidants as neuroprotective therapeutic strategies for schizophrenia from early stages.</p

    The Rad51 paralogs facilitate a novel DNA strand specific damage tolerance pathway

    Get PDF
    Accurate DNA replication is essential for genomic stability and cancer prevention. Homologous recombination is important for high-fidelity DNA damage tolerance during replication. How the homologous recombination machinery is recruited to replication intermediates is unknown. Here, we provide evidence that a Rad51 paralog-containing complex, the budding yeast Shu complex, directly recognizes and enables tolerance of predominantly lagging strand abasic sites. We show that the Shu complex becomes chromatin associated when cells accumulate abasic sites during S phase. We also demonstrate that purified recombinant Shu complex recognizes an abasic analog on a double-flap substrate, which prevents AP endo-nuclease activity and endonuclease-induced double-strand break formation. Shu complex DNA binding mutants are sensitive to methyl methanesulfonate, are not chromatin enriched, and exhibit increased mutation rates. We propose a role for the Shu complex in recognizing abasic sites at replication intermediates, where it recruits the homologous recombination machinery to mediate strand specific damage tolerance

    Genetic Determinants of Time Perception Mediated by the Serotonergic System

    Get PDF
    Background: The present study investigates neurobiological underpinnings of individual differences in time perception. Methodology: Forty-four right-handed Russian Caucasian males (18–35 years old) participated in the experiment. The polymorphism of the genes related to the activity of serotonin (5-HT) and dopamine (DA)-systems (such as 5-HTT, 5HT2a, MAOA, DAT, DRD2, COMT) was determined upon the basis of DNA analysis according to a standard procedure. Time perception in the supra-second range (mean duration 4.8 s) was studied, using the duration discrimination task and parametric fitting of psychometric functions, resulting in individual determination of the point of subjective equality (PSE). Assuming the ‘dual klepsydra model ’ of internal duration representation, the PSE values were transformed into equivalent values of the parameter k (kappa), which is a measure of the ‘loss rate ’ of the duration representation. An association between time representation parameters (PSE and k, respectively) and 5-HT-related genes was found, but not with DArelated genes. Higher ‘loss rate ’ (k) of the cumulative duration representation were found for the carriers of genotypes characterized by higher 5-HT transmission, i.e., 1) lower 5-HT reuptake, known for the 5-HTTLPR SS polymorphism compared with LL, 2) lower 5-HT degradation, described for the ‘low expression ’ variant of MAOA VNTR gene compared with ‘high expression ’ variant, and 3) higher 5-HT2a receptor density, proposed for the TT polymorphism of 5-HT2a T102C gene compared with CC

    Protest Cycles and Political Process: American Peace Movements in the Nuclear Age

    Full text link
    Since the dawn of the nuclear age small groups of activists have consistently protested both the content of United States national security policy, and the process by which it is made. Only occasionally, however, has concern about nuclear weapons spread beyond these relatively marginal groups, generated substantial public support, and reached mainstream political institutions. In this paper, I use histories of peace protest and analyses of the inside of these social movements and theoretical work on protest cycles to explain cycles of movement engagement and quiescence in terms of their relation to external political context, or the "structure of political opportunity." I begin with a brief review of the relevant literature on the origins of movements, noting parallels in the study of interest groups. Building on recent literature on political opportunity structure, I suggest a theoretical framework for understanding the lifecycle of a social movement that emphasizes the interaction between activist choices and political context, proposing a six-stage process through which challenging movements develop. Using this theoretical framework I examine the four cases of relatively broad antinuclear weapons mobilization in postwar America. I conclude with a discussion of movement cycles and their relation to political alignment, public policy, and institutional politics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68552/2/10.1177_106591299304600302.pd

    Abnormal Intracellular Accumulation and Extracellular Aβ Deposition in Idiopathic and Dup15q11.2-q13 Autism Spectrum Disorders

    Get PDF
    <div><h3>Background</h3><p>It has been shown that amyloid ß (Aβ), a product of proteolytic cleavage of the amyloid β precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type–specific amount.</p> <h3>Methodology/Principal Findings</h3><p>In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Aβ load were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12 examined regions (p<0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Aβ load differed significantly between idiopathic autism and control groups (p<0.0001). The intraneuronal Aβ was mainly N-terminally truncated. Increased intraneuronal accumulation of Aβ<sub>17–40/42</sub> in children and adults suggests a life-long enhancement of APP processing with α-secretase in autistic subjects. Aβ accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced α-secretase processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing Aβ<sub>1–40/42</sub> detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of alterations of APP processing with an intraneuronal accumulation of a short form of Aβ and an extracellular deposition of full-length Aβ in nonfibrillar plaques.</p> <h3>Conclusions/Significance</h3><p>The higher prevalence of excessive Aβ accumulation in neurons in individuals with early onset of intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and alterations of APP processing leading to neuronal and astrocytic Aβ accumulation and diffuse plaque formation.</p> </div

    Effects of morphine, nalorphine and naloxone on neocortical release of acetylcholine in the rat

    Full text link
    The effects of morphine (10 mg/kg), nalorphine (1 and 10 mg/kg), and naloxone (1 mg/kg) were studied on the neocortical release of acetylcholine (ACh) in midpontine pretrigeminal transected rats. Morphine and, to a lesser extent, nalorphine decreased ACh release. Naloxone was ineffective alone but antagonized the action of morphine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46384/1/213_2004_Article_BF00422643.pd
    • …
    corecore