23 research outputs found

    Analyse de la dynamique du facteur de transcription HSF1 "Heat Shock Factor 1" par microscopie de fluorescence

    Get PDF
    La majorité des études sur la dynamique des facteurs de transcription en cellules vivantes s'accordent sur une dynamique rapide. Il existe cependant quelques exceptions, comme la dynamique du facteur de transcription HSF Heat Shock Factor , sur les chromosomes polyténiques de drosophile. Notre projet a consisté à étudier la dynamique d'HSF1 dans des cellules humaines. L'exposition des cellules à un stress tel qu'un choc thermique induit une réponse ubiquitaire et transitoire, dont la fonction est de protéger les cellules contre les effets délétères du stress. Au cours d'un choc thermique, plusieurs phénomènes se produisent : i) un arrêt global de la transcription excepté pour certains gènes tels que ceux codant pour les protéines de choc thermique (HSPs), dont l'expression est sous le contrôle du facteur de transcription HSF1. ii) une activation d'HSF1 qui se relocalise de façon rapide et transitoire sur les corps nucléaires de stress (nSBs), où il induit la transcription des séquences satellite III. Les nSBs forment un site d'activité naturellement amplifié et visible en microscopie. Nous avons utilisé deux techniques complémentaires pour étudier la dynamique d'HSF1 en cellules vivantes : le recouvrement de fluorescence après photoblanchiment (FRAP) et la spectroscopie à corrélation de fluorescence multi-confocale (mFCS), qui permet l'analyse FCS en plusieurs points simultanément. En cellules HeLa, la protéine HSF1-eGFP présente une dynamique rapide qui est significativement ralentie suite à un choc thermique. En mFCS, nous avons obtenu des constantes de diffusion de 14 m /s avant choc thermique et de 10 m /s après choc thermique. En FRAP, le temps de demi-recouvrement est de 0,2 s avant choc thermique, 2,6 s après choc thermique dans le nucléoplasme et 65 s sur les corps nucléaires de stress. Le ralentissement de la dynamique d'HSF1 s'explique par deux phénomènes : i) la formation de complexes de haut poids moléculaire, ii) une augmentation des interactions avec la chromatine. Pour mieux caractériser le changement de dynamique d'HSF1 après choc thermique, plusieurs mutants ont été analysés. Le domaine de trimérisation est indispensable pour le changement de dynamique après choc thermique, alors que le domaine de liaison à l'ADN et le domaine de transactivation n'ont que peu d'effet sur le changement de dynamique. Il ne peut donc pas être expliqué uniquement par les interactions directes à la chromatine du domaine de liaison à l'ADN, ni même par les liaisons indirectes du domaine de transactivation via d'autres protéines. La protéine HSF1 pourrait interagir de façon aspécifique avec la chromatine lors de la recherche de site de liaison, ou d'autres protéines via d'autres domaines pourraient entrainer des interactions indirectes avec la chromatine.The majority of studies made on transcription factors dynamics on living cells agree with a fast dynamics process. However, there is some exceptions such as the dynamics of the transcription factor HSF Heat Shock Factor on drosophila polytenic chromosome. My project is to study HSF1 dynamics in human living cells. Cells exposure to a stress such as heat shock induces a transient and ubiquitous response that function's to protect cells against the deleterious effect of stress. During the course of a heat shock, several phenomenons take place: i) a global arrest of transcription, with the exception of some genes, such as those coding for the heat shock proteins (hsp), which expression is under the control of HSF1. ii) Activation of HSF1 that relocalize in a fast and transient way to nuclear stress bodies (nSBs), where it induces satellite III transcription. nSBs act as a natural amplification gene array, visible on microscopy. We have used two complementary techniques to look at HSF1 dynamics in living cells: Fluorescence recovery after photobleaching (FRAP) and multiconfocal fluorescence correlation spectroscopy (mFCS) that allow FCS analysis at several position simultaneously. On HeLa cells, HSF1-eGFP protein has a fast dynamics which is significantly slowed down following heat shock. On mFCS, we obtained a diffusion constant of 14 m /s before heat shock, and 10 m /s after heat shock. On FRAP, the half recovery time is 0.2 s before heat shock, 2.6 s after heat shock in the nucleoplasm and 65 s in nuclear stress bodies. HSF1 dynamics slowing down may be explain by two phenomenons: i) formation of high molecular mass complexes, ii) rise of interaction of HSF1 with chromatin. To better characterize changes in HSF1 dynamics after heat shock, several mutants have been analyzed. The trimerization domain of HSF1 is essential for dynamics changes after heat shock, while DNA binding domain (DBD) and transactivation domain (TAD) have only little effects on dynamics changes. These changes cannot only be explained by direct interaction of DNA binding domain with chromatin, neither by indirect interaction of the transactivation domain with other protein partners. HSF1 could be able to interact non-specifically with chromatin during the search for specific binding sites. Also other proteins via other domains might induce indirect binding to chromatin.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Analysis of Heat Shock Factor dynamics using fluorescence microscopy

    No full text
    La majorité des études sur la dynamique des facteurs de transcription en cellules vivantes s'accordent sur une dynamique rapide. Il existe cependant quelques exceptions, comme la dynamique du facteur de transcription HSF « Heat Shock Factor », sur les chromosomes polyténiques de drosophile. Notre projet a consisté à étudier la dynamique d'HSF1 dans des cellules humaines. L'exposition des cellules à un stress tel qu'un choc thermique induit une réponse ubiquitaire et transitoire, dont la fonction est de protéger les cellules contre les effets délétères du stress. Au cours d'un choc thermique, plusieurs phénomènes se produisent : i) un arrêt global de la transcription excepté pour certains gènes tels que ceux codant pour les protéines de choc thermique (HSPs), dont l'expression est sous le contrôle du facteur de transcription HSF1. ii) une activation d'HSF1 qui se relocalise de façon rapide et transitoire sur les corps nucléaires de stress (nSBs), où il induit la transcription des séquences satellite III. Les nSBs forment un site d'activité naturellement amplifié et visible en microscopie. Nous avons utilisé deux techniques complémentaires pour étudier la dynamique d'HSF1 en cellules vivantes : le recouvrement de fluorescence après photoblanchiment (FRAP) et la spectroscopie à corrélation de fluorescence multi-confocale (mFCS), qui permet l'analyse FCS en plusieurs points simultanément. En cellules HeLa, la protéine HSF1-eGFP présente une dynamique rapide qui est significativement ralentie suite à un choc thermique. En mFCS, nous avons obtenu des constantes de diffusion de 14 µm²/s avant choc thermique et de 10 µm²/s après choc thermique. En FRAP, le temps de demi-recouvrement est de 0,2 s avant choc thermique, 2,6 s après choc thermique dans le nucléoplasme et 65 s sur les corps nucléaires de stress. Le ralentissement de la dynamique d'HSF1 s'explique par deux phénomènes : i) la formation de complexes de haut poids moléculaire, ii) une augmentation des interactions avec la chromatine. Pour mieux caractériser le changement de dynamique d'HSF1 après choc thermique, plusieurs mutants ont été analysés. Le domaine de trimérisation est indispensable pour le changement de dynamique après choc thermique, alors que le domaine de liaison à l'ADN et le domaine de transactivation n'ont que peu d'effet sur le changement de dynamique. Il ne peut donc pas être expliqué uniquement par les interactions directes à la chromatine du domaine de liaison à l'ADN, ni même par les liaisons indirectes du domaine de transactivation via d'autres protéines. La protéine HSF1 pourrait interagir de façon aspécifique avec la chromatine lors de la recherche de site de liaison, ou d'autres protéines via d'autres domaines pourraient entrainer des interactions indirectes avec la chromatine.The majority of studies made on transcription factors dynamics on living cells agree with a fast dynamics process. However, there is some exceptions such as the dynamics of the transcription factor HSF “Heat Shock Factor” on drosophila polytenic chromosome. My project is to study HSF1 dynamics in human living cells. Cells exposure to a stress such as heat shock induces a transient and ubiquitous response that function's to protect cells against the deleterious effect of stress. During the course of a heat shock, several phenomenons take place: i) a global arrest of transcription, with the exception of some genes, such as those coding for the heat shock proteins (hsp), which expression is under the control of HSF1. ii) Activation of HSF1 that relocalize in a fast and transient way to nuclear stress bodies (nSBs), where it induces satellite III transcription. nSBs act as a natural amplification gene array, visible on microscopy. We have used two complementary techniques to look at HSF1 dynamics in living cells: Fluorescence recovery after photobleaching (FRAP) and multiconfocal fluorescence correlation spectroscopy (mFCS) that allow FCS analysis at several position simultaneously. On HeLa cells, HSF1-eGFP protein has a fast dynamics which is significantly slowed down following heat shock. On mFCS, we obtained a diffusion constant of 14 µm²/s before heat shock, and 10 µm²/s after heat shock. On FRAP, the half recovery time is 0.2 s before heat shock, 2.6 s after heat shock in the nucleoplasm and 65 s in nuclear stress bodies. HSF1 dynamics slowing down may be explain by two phenomenons: i) formation of high molecular mass complexes, ii) rise of interaction of HSF1 with chromatin. To better characterize changes in HSF1 dynamics after heat shock, several mutants have been analyzed. The trimerization domain of HSF1 is essential for dynamics changes after heat shock, while DNA binding domain (DBD) and transactivation domain (TAD) have only little effects on dynamics changes. These changes cannot only be explained by direct interaction of DNA binding domain with chromatin, neither by indirect interaction of the transactivation domain with other protein partners. HSF1 could be able to interact non-specifically with chromatin during the search for specific binding sites. Also other proteins via other domains might induce indirect binding to chromatin

    Analyse de la dynamique du facteur de transcription HSF1 "Heat Shock Factor 1" par microscopie de fluorescence

    No full text
    The majority of studies made on transcription factors dynamics on living cells agree with a fast dynamics process. However, there is some exceptions such as the dynamics of the transcription factor HSF “Heat Shock Factor” on drosophila polytenic chromosome. My project is to study HSF1 dynamics in human living cells. Cells exposure to a stress such as heat shock induces a transient and ubiquitous response that function's to protect cells against the deleterious effect of stress. During the course of a heat shock, several phenomenons take place: i) a global arrest of transcription, with the exception of some genes, such as those coding for the heat shock proteins (hsp), which expression is under the control of HSF1. ii) Activation of HSF1 that relocalize in a fast and transient way to nuclear stress bodies (nSBs), where it induces satellite III transcription. nSBs act as a natural amplification gene array, visible on microscopy. We have used two complementary techniques to look at HSF1 dynamics in living cells: Fluorescence recovery after photobleaching (FRAP) and multiconfocal fluorescence correlation spectroscopy (mFCS) that allow FCS analysis at several position simultaneously. On HeLa cells, HSF1-eGFP protein has a fast dynamics which is significantly slowed down following heat shock. On mFCS, we obtained a diffusion constant of 14 µm²/s before heat shock, and 10 µm²/s after heat shock. On FRAP, the half recovery time is 0.2 s before heat shock, 2.6 s after heat shock in the nucleoplasm and 65 s in nuclear stress bodies. HSF1 dynamics slowing down may be explain by two phenomenons: i) formation of high molecular mass complexes, ii) rise of interaction of HSF1 with chromatin. To better characterize changes in HSF1 dynamics after heat shock, several mutants have been analyzed. The trimerization domain of HSF1 is essential for dynamics changes after heat shock, while DNA binding domain (DBD) and transactivation domain (TAD) have only little effects on dynamics changes. These changes cannot only be explained by direct interaction of DNA binding domain with chromatin, neither by indirect interaction of the transactivation domain with other protein partners. HSF1 could be able to interact non-specifically with chromatin during the search for specific binding sites. Also other proteins via other domains might induce indirect binding to chromatin.La majorité des études sur la dynamique des facteurs de transcription en cellules vivantes s'accordent sur une dynamique rapide. Il existe cependant quelques exceptions, comme la dynamique du facteur de transcription HSF « Heat Shock Factor », sur les chromosomes polyténiques de drosophile. Notre projet a consisté à étudier la dynamique d'HSF1 dans des cellules humaines. L'exposition des cellules à un stress tel qu'un choc thermique induit une réponse ubiquitaire et transitoire, dont la fonction est de protéger les cellules contre les effets délétères du stress. Au cours d'un choc thermique, plusieurs phénomènes se produisent : i) un arrêt global de la transcription excepté pour certains gènes tels que ceux codant pour les protéines de choc thermique (HSPs), dont l'expression est sous le contrôle du facteur de transcription HSF1. ii) une activation d'HSF1 qui se relocalise de façon rapide et transitoire sur les corps nucléaires de stress (nSBs), où il induit la transcription des séquences satellite III. Les nSBs forment un site d'activité naturellement amplifié et visible en microscopie. Nous avons utilisé deux techniques complémentaires pour étudier la dynamique d'HSF1 en cellules vivantes : le recouvrement de fluorescence après photoblanchiment (FRAP) et la spectroscopie à corrélation de fluorescence multi-confocale (mFCS), qui permet l'analyse FCS en plusieurs points simultanément. En cellules HeLa, la protéine HSF1-eGFP présente une dynamique rapide qui est significativement ralentie suite à un choc thermique. En mFCS, nous avons obtenu des constantes de diffusion de 14 µm²/s avant choc thermique et de 10 µm²/s après choc thermique. En FRAP, le temps de demi-recouvrement est de 0,2 s avant choc thermique, 2,6 s après choc thermique dans le nucléoplasme et 65 s sur les corps nucléaires de stress. Le ralentissement de la dynamique d'HSF1 s'explique par deux phénomènes : i) la formation de complexes de haut poids moléculaire, ii) une augmentation des interactions avec la chromatine. Pour mieux caractériser le changement de dynamique d'HSF1 après choc thermique, plusieurs mutants ont été analysés. Le domaine de trimérisation est indispensable pour le changement de dynamique après choc thermique, alors que le domaine de liaison à l'ADN et le domaine de transactivation n'ont que peu d'effet sur le changement de dynamique. Il ne peut donc pas être expliqué uniquement par les interactions directes à la chromatine du domaine de liaison à l'ADN, ni même par les liaisons indirectes du domaine de transactivation via d'autres protéines. La protéine HSF1 pourrait interagir de façon aspécifique avec la chromatine lors de la recherche de site de liaison, ou d'autres protéines via d'autres domaines pourraient entrainer des interactions indirectes avec la chromatine

    A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells

    No full text
    International audienceOverexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation. © 2016 The Author(s)

    Cellular response to heat shock studied by multiconfocal fluorescence correlation spectroscopy.

    Get PDF
    International audienceHeat shock triggers a transient and ubiquitous response, the function of which is to protect cells against stress-induced damage. The heat-shock response is controlled by a key transcription factor known as heat shock factor 1 (HSF1). We have developed a multiconfocal fluorescence correlation spectroscopy setup to measure the dynamics of HSF1 during the course of the heat-shock response. The system combines a spatial light modulator, to address several points of interest, and an electron-multiplying charge-coupled camera for fast multiconfocal recording of the photon streams. Autocorrelation curves with a temporal resolution of 14 μs were analyzed before and after heat shock on eGFP and HSF1-eGFP-expressing cells. Evaluation of the dynamic parameters of a diffusion-and-binding model showed a slower HSF1 diffusion after heat shock. It is also observed that the dissociation rate decreases after heat shock, whereas the association rate is not affected. In addition, thanks to the multiconfocal fluorescence correlation spectroscopy system, up to five spots could be simultaneously located in each cell nucleus. This made it possible to quantify the intracellular variability of the diffusion constant of HSF1, which is higher than that of inert eGFP molecules and increases after heat shock. This finding is consistent with the fact that heat-shock response is associated with an increase of HSF1 interactions with DNA and cannot be explained even partially by heat-induced modifications of nuclear organization

    Dynamics of the Full Length and Mutated Heat Shock Factor 1 in Human Cells

    Get PDF
    Heat shock factor 1 is the key transcription factor of the heat shock response. Its function is to protect the cell against the deleterious effects of stress. Upon stress, HSF1 binds to and transcribes hsp genes and repeated satellite III (sat III) sequences present at the 9q12 locus. HSF1 binding to pericentric sat III sequences forms structures known as nuclear stress bodies (nSBs). nSBs represent a natural amplification of RNA pol II dependent transcription sites. Dynamics of HSF1 and of deletion mutants were studied in living cells using multi-confocal Fluorescence Correlation Spectroscopy (mFCS) and Fluorescence Recovery After Photobleaching (FRAP). In this paper, we show that HSF1 dynamics modifications upon heat shock result from both formation of high molecular weight complexes and increased HSF1 interactions with chromatin. These interactions involve both DNA binding with Heat Shock Element (HSE) and sat III sequences and a more transient sequence-independent binding likely corresponding to a search for more specific targets. We find that the trimerization domain is required for low affinity interactions with chromatin while the DNA binding domain is required for site-specifi

    Intracellular localization of HSF1 transcription factor in HeLa cells.

    No full text
    <p>CLSM images of wild type HSF1-eGFP, HSF1-ΔTRIM-eGFP, HSF1-K80Q-eGFP and HSF1-ΔDBD-eGFP before (NHS) and after a one hour heat shock (HS). HSF1 is predominantly nuclear except when the trimerization domain is deleted. After a one-hour heat shock, nuclear stress bodies (nSBs, black arrows) are only formed with HSF1-eGFP full length. Scale bar = 5 µm.</p

    Expression levels of HSF1 and HSF1-eGFP in stable HeLa cell lines.

    No full text
    <p>HSF1 western blotting of full protein extracts before (−) and after one hour heat shock (+), in control cells (Ctl), cell lines expressing the full length HSF1-eGFP (wt), the HSF1-eGFP mutant deleted of the trimerization domain (ΔTRIM), the HSF1-eGFP with the punctual mutation (K80Q) and the HSF1-eGFP mutant deleted for the DNA binding domain (ΔDBD). The shifted bands detected after HS (+) represent the phosphorylated form of HSF1.</p
    corecore