10 research outputs found
Proceedings of the Working Group Session on Fertility Preservation for Individuals with Gender and Sex Diversity
Children and adolescents with gender and sex diversity include (1) gender-nonconforming and transgender individuals for whom gender identity or expression are incongruent with birth-assigned sex (heretofore, transgender) and (2) individuals who have differences in sex development (DSD). Although these are largely disparate groups, there is overlap in the medical expertise necessary to care for individuals with both gender and sex diversity. In addition, both groups face potential infertility or sterility as a result of desired medical and surgical therapies. The Ann and Robert H. Lurie Children's Hospital of Chicago (Lurie Children's) gender and sex development program (GSDP) provides specialized multidisciplinary care for both transgender and DSD patients. In response to patient concerns that recommended medical treatments have the potential to affect fertility, the Lurie Children's GSDP team partnered with experts from the Oncofertility Consortium at Northwestern University to expand fertility preservation options to gender and sex diverse youth. This article summarizes the results of a meeting of experts across this field at the annual Oncofertility Consortium conference with thoughts on next steps toward a unified protocol for this patient group.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140296/1/trgh.2016.0008.pd
Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence
The remarkable structural polymorphism of quadruplex-forming sequences has been a considerable impediment in the elucidation of quadruplex folds. Sequence modifications have commonly been used to perturb and purportedly select a particular form out of the ensemble of folds for nuclear magnetic resonance (NMR) or X-ray crystallographic analysis. Here we report a simple chromatographic technique that separates the individual folds without need for sequence modification. The sequence d(GGTGGTGGTGGTTGTGGTGGTGGTGG) forms a compact quadruplex according to a variety of common biophysical techniques. However, NMR and chromatography showed that this oligonucleotide produces at least eight monomeric quadruplex species that interconvert very slowly at room temperature. We have used a combination of spectroscopic, hydrodynamic and thermodynamic techniques to evaluate the physicochemical properties of the mixture and the individual species. These species have almost identical thermodynamic, hydrodynamic and electrophoretic properties, but significantly different NMR and circular dichroism (CD) spectra, as well as kinetic stability. These results demonstrate that simple standard low-resolution techniques cannot always be used for quadruplex fold determination or quality control purposes, and that simple thermodynamic analysis does not directly provide interpretable thermodynamic parameters
Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients
Background!#!The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system.!##!Methods!#!In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings.!##!Results!#!Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host.!##!Conclusions!#!Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity