227 research outputs found

    ZnO:B back reflector with high haze and low absorption enhanced triple-junction thin film Si solar modules

    Get PDF
    AbstractWe present our development of a ZnO:B back reflector (BR) with high haze and low absorption for highly efficient triple-junction thin film Si solar modules over a large area (1.1×1.3m2). We try to maximize light trapping by the evaluation of the use of transparent conducting oxide (TCO) and BR for high efficiency. It was verified that the configuration of SnO2:F front TCO and ZnO:B BR shows better optical properties than typical configurations for light trapping due to its high transparency at the front and high haze at the back. In addition, we noticed that the absorption of the BR has a strong influence on the solar modules. We obtained a superior ZnO:B BR with high haze and low absorption by controlling the doping gas ratio (B2H6/DEZ). As the doping gas ratio of ZnO:B BR decreases, the haze increases due to a rougher surface morphology, and the absorption decreases due to reduced free carrier absorption. The solar modules with a ZnO:B BR in a lower doping gas ratio show relatively higher Pmax for the same i-μc-Si layer thickness. This results from an increased Isc due to higher haze and lower absorption. In addition, the ZnO:B BR with a low doping gas ratio was found to be effective in reducing the i-μc-Si layer thickness because there are more chances for trapping the light at the i-μc-Si layer. We could reduce the i-μc-Si layer thickness by about 28% for the equivalent Pmax level by lowering the doping gas ratio. We successfully applied the ZnO:B BR with high haze and low absorption into a triple-junction thin film silicon solar cell and achieved a new record, improving on our previous world record

    Variation of the layer thickness to study the electrical property of PECVD Al2O3 / c-Si interface

    Get PDF
    AbstractThis paper focusses in particular on the influence of the layer thickness on the passivation quality, the charge density and the interface defects of PECVD Al2O3 passivation layers on c-Si surfaces. The surface recombination velocity and the interface defect density are observed to increase by decreasing the layer thickness. However, the density of negative charges remains almost constant with values around 3 1012cm-2. An optimal passivation quality is obtained for thicknesses of 15nm and higher. A linear relation between surface recombination velocity and Dit was established, allowing the estimation of the electron capture cross section (σn ∼ 10-13cm-2).Additionally, we measured the capture cross section of holes and electrons using DLTS measurement. The results are found to be very similar to reported values for silicon dioxide. This supports the idea that the chemical passivation of crystalline silicon by Al2O3 is performed by the interstitial SiO2 layer

    Improved Sugar Production by Optimizing Planetary Mill Pretreatment and Enzyme Hydrolysis Process

    Get PDF
    This paper describes an optimization of planetary mill pretreatment and saccharification processes for improving biosugar production. Pitch pine (Pinus rigida) wood sawdust waste was used as biomass feedstock and the process parameters optimized in this study were the buffering media, the milling time, the enzyme quantity, and the incubation time. Glucose yields were improved when acetate buffer was used rather than citrate buffer. Initially, with each process variable tests, the optimal values were 100 minutes of milling, an enzyme concentration of 16 FPU/g-biomass, and a 12-hour enzymatic hydrolysis. Typically, interactions between these experimental conditions and their effects on glucose production were next investigated using RSM. Glucose yields from the Pinus rigida waste exceeded 80% with several of the conditions tested, demonstrating that milling can be used to obtain high levels of glucose bioconversion from woody biomass for biorefinery purposesopen

    Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    Get PDF
    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system.open115850sciescopu

    Analysis of Endoscopic Electronic Image of Intramucosal Gastric Carcinoma Using a Software Program for Calculating Hemoglobin Index

    Get PDF
    Hemoglobin is the predominent pigment in the gastrointestinal mucosa, and the development of electronic endoscopy has made it possible to quantitatively measure the mucosal hemoglobin volume, by using a hemoglobin index (IHb). The aims of this study were to make a software program to calculate the IHb and then to investigate whether the mucosal IHb determined from the electronic endoscopic data is a useful marker for evaluating the color of intramucosal gastric carcinoma with regard to its value for discriminating between the histologic types. We made a software program for calculating the IHb in the endoscopic images. By using this program, the mean values of the IHb for the carcinoma (IHb-C) and those of the IHb for the surrounding non-cancerous mucosa (IHb-N) were calculated in 75 intestinal-type and 34 diffuse-type intramucosal gastric carcinomas. We then analyzed the ratio of the IHb-C to the IHb-N (C/N ratio). The C/N ratio in the intestinal-type carcinoma group was higher than that in the diffuse-type carcinoma group (p<0.001). In the diffuse-type carcinoma group, the C/N ratio in the body was lower than that in the antrum (p=0.022). The accuracy rate, sensitivity, specificity, and the positive and negative predictive values for the differential diagnosis of the diffuse-type carcinoma from the intestinal-type carcinoma were 94.5%, 94.1%, 94.7%, 88.9% and 97.3%, respectively. IHb is useful for making quantitative measurement of the endoscopic color in the intramucosal gastric carcinoma, and the C/N ratio by using the IHb would be helpful for distinguishing the diffuse-type carcinoma from the intestinal-type carcinoma

    The role of PET/CT in detection of gastric cancer recurrence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the course of surveillance of gastric cancer recurrence after curative resection, contrast CT scan is used in general. However, new findings from CT scan are not always confirmatory for the recurrence. In this case, we usually use short-term follow up strategy or therapeutic intervention with clinical decision. Recently, the use of fusion Positron Emission Tomography/Computed Tomography (PET/CT) is increasing. The purpose of this study is to evaluate the efficacy and usefulness of PET/CT for detecting recurrence of gastric cancer after curative resection.</p> <p>Methods</p> <p>Fifty two patients who received curative resection of gastric cancer and had undergone PET/CT and contrast CT for surveillance of recurrence until Dec 2006 in Seoul National University Hospital were analyzed retrospectively. Recurrence of gastric cancer was validated by histologic confirmation (n = 17) or serial contrast CT follow up with at least 5 month interval (n = 35). McNemar's test and Fisher's exact test were used to evaluate sensitivity and specificity of PET/CT and contrast CT.</p> <p>Results</p> <p>Of 52 patients, 38 patients were confirmed as recurrence. The sensitivity was 68.4% (26/38) for PET/CT and 89.4% (34/38) for contrast CT (p = 0.057). The specificity was 71.4% (10/14) and 64.2% (9/14), respectively (p = 1.0). In terms of the recurred sites, the sensitivity and specificity of PET/CT were similar to those of contrast CT in all sites except peritoneum. Contrast CT was more sensitive than PET/CT (p = 0.039) for detecting peritoneal seeding. Additional PET/CT on contrast CT showed no further increase of positive predictive value regardless of sites. Among 13 patients whose image findings between two methods were discordant and tissue confirmation was difficult, the treatment decision was made in 7 patients based on PET/CT, showing the final diagnostic accuracy of 42.8% (3/7).</p> <p>Conclusion</p> <p>PET/CT was as sensitive and specific as contrast CT in detection of recurred gastric cancer except peritoneal seeding. However, additional PET/CT on contrast CT did not increase diagnostic accuracy in detection of recurred gastric cancer. Further studies are warranted to validate the role of PET/CT in detection of gastric cancer recurrence.</p

    Reactive oxygen species regulate context-dependent inhibition of NFAT5 target genes

    Get PDF
    The activation of nuclear factor of activated T cells 5(NFAT5), a well-known osmoprotective factor, can be induced by isotonic stimuli, such as activated Toll-like receptors (TLRs). It is unclear, however, how NFAT5 discriminates between isotonic and hypertonic stimuli. In this study we identified a novel context-dependent suppression of NFAT5 target gene expression in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) or a high salt (NaCl) concentration. Although LPS and NaCl both used NFAT5 as a core transcription factor, these stimuli mutually inhibited distinct sets of NFAT5 targets within the cells. Although reactive oxygen species (ROS) are essential for this inhibition, the source of ROS differed depending on the context: mitochondria for high salt and xanthine oxidase for TLRs. Specifically, the high salt-induced suppression of interleukin-6 (IL-6) production was mediated through the ROS-induced inhibition of NFAT5 binding to the IL-6 promoter. The context-dependent inhibition of NFAT5 target gene expression was also confirmed in mouse spleen and kidney tissues that were cotreated with LPS and high salt. Taken together, our data suggest that ROS function as molecular sensors to discriminate between TLR ligation and osmotic stimuli in RAW 264.7 macrophages, directing NFAT5 activity toward proinflammatory or hypertonic responses in a context-dependent manner.open3
    corecore