67 research outputs found

    Differential between Protein and mRNA Expression of CCR7 and SSTR5 Receptors in Crohn's Disease Patients

    Get PDF
    Crohn's disease (CD) is a multifactorial chronic inflammatory bowel disease of unknown cause. The aim of the present study was to explore if mRNA over-expression of SSTR5 and CCR7 found in CD patients could be correlated to respective protein expression. When compared to healthy donors, SSTR5 was over-expressed 417 ± 71 times in CD peripheral blood mononuclear cells (PBMCs). Flow cytometry experiments showed no correlation between mRNA and protein expression for SSTR5 in PBMCs. In an attempt to find a reason of such a high mRNA expression, SSTR5 present on CD PBMCs were tested and found as biologically active as on healthy cells. In biopsies of CD intestinal tissue, SSTR5 was not over-expressed but CCR7, unchanged in PBMCs, was over-expressed by 10 ± 3 times in the lamina propria. Confocal microscopy showed a good correlation of CCR7 mRNA and protein expression in CD intestinal biopsies. Our data emphasize flow and image cytometry as impossible to circumvent in complement to molecular biology so to avoid false interpretation on receptor expressions. Once confirmed by further large-scale studies, our preliminary results suggest a role for SSTR5 and CCR7 in CD pathogenesis

    Microtome-integrated microscope system for high sensitivity tracking of in-resin fluorescence in blocks and ultrathin sections for correlative microscopy

    Get PDF
    Many areas of biological research demand the combined use of different imaging modalities to cover a wide range of magnifications and measurements or to place fluorescent patterns into an ultrastructural context. A technically difficult problem is the efficient specimen transfer between different imaging modalities without losing the coordinates of the regions-of-interest (ROI). Here, we report a new and highly sensitive integrated system that combines a custom designed microscope with an ultramicrotome for in-resin-fluorescence detection in blocks, ribbons and sections on EM-grids. Although operating with long-distance lenses, this system achieves a very high light sensitivity. Our instrumental set-up and operating workflow are designed to investigate rare events in large tissue volumes. Applications range from studies of individual immune, stem and cancer cells to the investigation of non-uniform subcellular processes. As a use case, we present the ultrastructure of a single membrane repair patch on a muscle fiber in intact muscle in a whole animal context

    Brain Struct Funct

    Get PDF
    Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual receptor mapping throughout the nervous system. Data are organized as an interactive database offering an opioid receptor atlas with concomitant MOR/DOR visualization at subcellular resolution, accessible online. We also provide co-immunoprecipitation-based evidence for receptor heteromerization in these mice. In the forebrain, MOR and DOR are mainly detected in separate neurons, suggesting system-level interactions in high-order processing. In contrast, neuronal co-localization is detected in subcortical networks essential for survival involved in eating and sexual behaviors or perception and response to aversive stimuli. In addition, potential MOR/DOR intracellular interactions within the nociceptive pathway offer novel therapeutic perspectives

    How has internet addiction research evolved since the advent of internet gaming disorder? An overview of cyberaddictions from a psychological perspective

    Get PDF
    During the past two decades, Internet addiction (IA) has been the most commonly used term in research into online activities and their influence on the development of behavioral addictions. The aim of this review is to assess the impact of the concept of Internet gaming disorder (IGD), proposed by the American Psychiatric Association, on the scientific literature regarding IA. It presents a bibliometric analysis of the IA literature starting from the time IGD was first proposed, with the objective of observing and comparing the topics that have arisen during this period among the different IA themes researched. The findings demonstrate a steady evolution, particularly regarding publications related to the general aspects of IA: its clinical component, its prevalence and psychometric measures, the growing interest in the contextual factors promoting this addictive behavior, scientific progress in its conceptualization based on existing theoretical models, and neuropsychological studies. Nevertheless, many of the studies (22 %) focus on specific IA behaviors and show heterogeneity among the cyberaddictions, with online gaming (related to IGD) most common, followed by cybersex and social networking. Although research on the general concept of IA continues, investigators have begun to pay attention to the diverse spectrum of specific cyberaddictions and their psychological components

    Unlike for Human Monocytes after LPS Activation, Release of TNF-α by THP-1 Cells Is Produced by a TACE Catalytically Different from Constitutive TACE

    Get PDF
    Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine today identified as a key mediator of several chronic inflammatory diseases. TNF-α, initially synthesized as a membrane-anchored precursor (pro-TNF-α), is processed by proteolytic cleavage to generate the secreted mature form. TNF-α converting enzyme (TACE) is currently the first and single protease described as responsible for the inducible release of soluble TNF-α.Here, we demonstrated the presence on THP-1 cells as on human monocytes of a constitutive proteolytical activity able to cleave pro-TNF-α. Revelation of the cell surface TACE protein expression confirmed that the observed catalytic activity is due to TACE. However, further studies using effective and innovative TNF-α inhibitors, as well as a highly selective TACE inhibitor, support the presence of a catalytically different sheddase activity on LPS activated THP-1 cells. It appears that this catalytically different TACE protease activity might have a significant contribution to TNF-α release in LPS activated THP-1 cells, by contrast to human monocytes where the TACE activity remains catalytically unchanged even after LPS activation.On the surface of LPS activated THP-1 cells we identified a releasing TNF-α activity, catalytically different from the sheddase activity observed on human monocytes from healthy donors. This catalytically-modified TACE activity is different from the constitutive shedding activity and appears only upon stimulation by LPS

    Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system

    Get PDF
    In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of Runx transcription factor paralogs with apparent functional redundancy. Here we asked what cell type-specific biologies might be supported by the selective expression of Runx paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional non-equivalence between Runx paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA-binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain, and evolutionary reconstruction suggested convergence of RUNT domain residues towards sub-maximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system

    Comparison of 1.0 M gadobutrol and 0.5 M gadopentate dimeglumine-enhanced MRI in 471 patients with known or suspected renal lesions: Results of a multicenter, single-blind, interindividual, randomized clinical phase III trial

    Get PDF
    The purpose of this phase III clinical trial was to compare two different extracellular contrast agents, 1.0 M gadobutrol and 0.5 M gadopentate dimeglumine, for magnetic resonance imaging (MRI) in patients with known or suspected focal renal lesions. Using a multicenter, single-blind, interindividual, randomized study design, both contrast agents were compared in a total of 471 patients regarding their diagnostic accuracy, sensitivity, and specificity to correctly classify focal lesions of the kidney. To test for noninferiority the diagnostic accuracy rates for both contrast agents were compared with CT results based on a blinded reading. The average diagnostic accuracy across the three blinded readers ('average reader') was 83.7% for gadobutrol and 87.3% for gadopentate dimeglumine. The increase in accuracy from precontrast to combined precontrast and postcontrast MRI was 8.0% for gadobutrol and 6.9% for gadopentate dimeglumine. Sensitivity of the average reader was 85.2% for gadobutrol and 88.7% for gadopentate dimeglumine. Specificity of the average reader was 82.1% for gadobutrol and 86.1% for gadopentate dimeglumine. In conclusion, this study documents evidence for the noninferiority of a single i.v. bolus injection of 1.0 M gadobutrol compared with 0.5 M gadopentate dimeglumine in the diagnostic assessment of renal lesions with CE-MRI
    corecore