173 research outputs found

    Estrogen receptor-α polymorphism in a Taiwanese clinical breast cancer population: a case–control study

    Get PDF
    INTRODUCTION: Receptor-mediated estrogen activation participates in the development and progression of breast cancer. Estrogen receptor (ER)-α polymorphism has been found to be associated with breast cancer and clinical features of the disease in Caucasians. Epidemiologic studies have revealed that age–incidence patterns of breast cancer in Asians differ from those in Caucasians. Genomic data for ER-α in either population is therefore of value in the clinical setting for that ethnic group. METHODS: A case–control study was conducted to establish a database of ER-α polymorphisms in a Taiwanese population in order to compare Western and Taiwanese (Asian) distributions and to evaluate ER-α polymorphism as an indicator of clinical outcome. The ER-α gene was scanned in a Taiwanese clinical breast cancer group (189 patients) and in healthy individuals (177 healthy control individuals). PCR single-strand conformation polymorphism technology was employed and real-time PCR melting curve analysis was performed. RESULTS: Three sites of silent single nucleotide polymorphism (SNPs) were found, as reported previously in Western studies, but at significantly different frequencies. Among the three SNPs, the frequency of allele 1 (TCT → TCC) in codon 10 was significantly lower in breast cancer patients (32.0%) than in control individuals (40.4%; P = 0.018). We found that allele 1 (ACG → ACA) in codon 594 was less common in breast cancer patients with a family history of breast cancer (5.9%) than in those without such a history (19.6%; P = 0.049). Individually, both allele 1 in codon 325 (CCC → CCG) and allele 1 in codon 594 exhibited a reverse association with the occurrence of lymph node metastasis. Furthermore, incorporation of both SNP markers further increased predictive accuracy. CONCLUSIONS: Our data suggest that ER-α polymorphisms are correlated with various aspects of breast cancer in Taiwan. ER-α genotype, as determined during presurgical evaluation, might represent a surrogate marker for predicting breast cancer lymph node metastasis

    Differentiation and Glucocorticoid Regulated Apopto-Phagocytic Gene Expression Patterns in Human Macrophages. Role of Mertk in Enhanced Phagocytosis

    Get PDF
    The daily clearance of physiologically dying cells is performed safely mainly by cells in the mononuclear phagocyte system. They can recognize and engulf dying cells utilizing several cooperative mechanisms. In our study we show that the expression of a broad range of apopto-phagocytic genes is strongly up-regulated during differentiation of human monocytes to macrophages with different donor variability. The glucocorticoid dexamethasone has a profound effect on this process by selectively up-regulating six genes and down-regulating several others. The key role of the up-regulated mer tyrosine kinase (Mertk) in dexamethasone induced enhancement of phagocytosis could be demonstrated in human monocyte derived macrophages by gene silencing as well as blocking antibodies, and also in a monocyte-macrophage like cell line. However, the additional role of other glucocorticoid induced elements must be also considered since the presence of autologous serum during phagocytosis could almost completely compensate for the blocked function of Mertk

    It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres

    Get PDF
    Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas

    GEP100/Arf6 Is Required for Epidermal Growth Factor-Induced ERK/Rac1 Signaling and Cell Migration in Human Hepatoma HepG2 Cells

    Get PDF
    BACKGROUND: Epidermal growth factor (EGF) signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS: We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH) domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N) also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE: Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis

    Anti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation

    Get PDF
    BACKGROUND: Fas receptor-mediated eosinophil apoptosis is currently forwarded as a mechanism resolving asthma-like inflammation. This view is based on observations in vitro and in airway lumen with unknown translatability to airway tissues in vivo. In fact, apoptotic eosinophils have not been detected in human diseased airway tissues whereas cytolytic eosinophils abound and constitute a major mode of degranulation of these cells. Also, Fas receptor stimulation may bypass the apoptotic pathway and directly evoke cytolysis of non-apoptotic cells. We thus hypothesized that effects of anti-Fas mAb in vivo may include both apoptosis and cytolysis of eosinophils and, hence, that established eosinophilic inflammation may not resolve by this treatment. METHODS: Weeklong daily allergen challenges of sensitized mice were followed by airway administration of anti-Fas mAb. BAL was performed and airway-pulmonary tissues were examined using light and electron microscopy. Lung tissue analysis for CC-chemokines, apoptosis, mucus production and plasma exudation (fibrinogen) were performed. RESULTS: Anti-Fas mAb evoked apoptosis of 28% and cytolysis of 4% of eosinophils present in allergen-challenged airway tissues. Furthermore, a majority of the apoptotic eosinophils remained unengulfed and eventually exhibited secondary necrosis. A striking histopathology far beyond the allergic inflammation developed and included degranulated eosinophils, neutrophilia, epithelial derangement, plasma exudation, mucus-plasma plugs, and inducement of 6 CC-chemokines. In animals without eosinophilia anti-Fas evoked no inflammatory response. CONCLUSION: An efficient inducer of eosinophil apoptosis in airway tissues in vivo, anti-Fas mAb evoked unprecedented asthma-like inflammation in mouse allergic airways. This outcome may partly reflect the ability of anti-Fas to evoke direct cytolysis of non-apoptotic eosinophils in airway tissues. Additionally, since most apoptotic tissue eosinophils progressed into the pro-inflammatory cellular fate of secondary necrosis this may also explain the aggravated inflammation. Our data indicate that Fas receptor mediated eosinophil apoptosis in airway tissues in vivo may cause severe disease exacerbation due to direct cytolysis and secondary necrosis of eosinophils

    Mammographic density, lobular involution, and risk of breast cancer

    Get PDF
    In this review, we propose that age-related changes in mammographic density and breast tissue involution are closely related phenomena, and consider their potential relevance to the aetiology of breast cancer. We propose that the reduction in mammographic density that occurs with increasing age, parity and menopause reflects the involution of breast tissue. We further propose that age-related changes in both mammographic density and breast tissue composition are observable and measurable phenomena that resemble Pike's theoretical construct of ‘breast tissue ageing'. Extensive mammographic density and delayed breast involution are both associated with an increased risk of breast cancer and are consistent with the hypothesis of the Pike model that cumulative exposure of breast tissue to hormones and growth factors that stimulate cell division, as well as the accumulation of genetic damage in breast cells, are major determinants of breast cancer incidence

    Molecular preservation by extraction and fixation, mPREF: a method for small molecule biomarker analysis and histology on exactly the same tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histopathology is the standard method for cancer diagnosis and grading to assess aggressiveness in clinical biopsies. Molecular biomarkers have also been described that are associated with cancer aggressiveness, however, the portion of tissue analyzed is often processed in a manner that is destructive to the tissue. We present here a new method for performing analysis of small molecule biomarkers and histology in exactly the same biopsy tissue.</p> <p>Methods</p> <p>Prostate needle biopsies were taken from surgical prostatectomy specimens and first fixed, each in a separate vial, in 2.5 ml of 80% methanol:water. The biopsies were fixed for 24 hrs at room temperature and then removed and post-processed using a non-formalin-based fixative (UMFIX), embedded, and analyzed by hematoxylin and eosin (H&E) and by immunohistochemical (IHC) staining. The retained alcohol pre-fixative was analyzed for small molecule biomarkers by mass spectrometry.</p> <p>Results</p> <p>H&E analysis was successful following the pre-fixation in 80% methanol. The presence or absence of tumor could be readily determined for all 96 biopsies analyzed. A subset of biopsy sections was analyzed by IHC, and cancerous and non-cancerous regions could be readily visualized by PIN4 staining. To demonstrate the suitability for analysis of small molecule biomarkers, 28 of the alcohol extracts were analyzed using a mass spectrometry-based metabolomics platform. All extracts tested yielded successful metabolite profiles. 260 named biochemical compounds were detected in the alcohol extracts. A comparison of the relative levels of compounds in cancer containing <it>vs</it>. non-cancer containing biopsies showed differences for 83 of the compounds. A comparison of the results with prior published reports showed good agreement between the current method and prior reported biomarker discovery methods that involve tissue destructive methods.</p> <p>Conclusions</p> <p>The Molecular Preservation by Extraction and Fixation (mPREF) method allows for the analysis of small molecule biomarkers from exactly the same tissue that is processed for histopathology.</p
    corecore