72 research outputs found

    Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns

    Full text link
    In order to describe the slow response of a glass former we discuss some distribution of correlation times, e.g., the generalized gamma distribution (GG) and an extension thereof (GGE), the latter allowing to reproduce a simple peak susceptibility such as of Cole-Davidson type as well as a susceptibility exhibiting an additional high frequency power law contribution (excess wing). Applying the GGE distribution to the dielectric spectra of glass formers exhibiting no beta-process peak (glycerol, propylene carbonate and picoline) we are able to reproduce the salient features of the slow response (1e-6 Hz - 1e9 Hz). A line shape analysis is carried out either in the time or frequency domain and in both cases an excess wing can be identified. The latter evolves in a universal way while cooling and shows up for correlation times tau_alpha > 1e-8 s. It appears that its first emergence marks the break down of the high temperature scenario of mode coupling theory. - In order to describe a glass former exhibiting a beta-process peak we have introduced a distribution function which is compatible with assuming a thermally activated process in contrast to some commonly used fit functions. Together with the GGE distribution this function allows in the frame of the Williams-Watts approach to completely interpolate the spectra, e.g. of fluoro aniline (1e-6 Hz - 1e9 Hz). The parameters obtained indicate an emergence of both the excess wing and the beta-process again at tau_alpha > 1e-8s.Comment: 22 pages, 12 figure

    Corresponding States of Structural Glass Formers

    Full text link
    The variation with respect to temperature T of transport properties of 58 fragile structural glass forming liquids (68 data sets in total) are analyzed and shown to exhibit a remarkable degree of universality. In particular, super-Arrhenius behaviors of all super-cooled liquids appear to collapse to one parabola for which there is no singular behavior at any finite temperature. This behavior is bounded by an onset temperature To above which liquid transport has a much weaker temperature dependence. A similar collapse is also demonstrated, over the smaller available range, for existing numerical simulation data.Comment: 6 pages, 2 figures. Updated References, Table Values, Submitted for Publicatio

    Invariance of the Local Segmental Relaxation Dispersion in Polycyclohexylmethacrylate / Poly-alpha-Methylstyrene Blends

    Full text link
    Dielectric spectroscopy was carried out on polycyclohexylmethacrylate (PCHMA) and its blend with poly-alpha-methylstyrene (PaMS) as a function of temperature and pressure. When measured at conditions whereby the local segmental relaxation time for the PCHMA was constant, the dispersion in the loss spectra had a fixed shape; that is, the relaxation time determines the breadth of the relaxation time distribution, independently of T and P. This result is known for neat materials and could be observed for the blend herein due to the nonpolar character of the PaMS and the degree of thermodynamic miscibility of the blend.Comment: 13 pages 5 figure

    Molecular origin of enhanced proton conductivity in anhydrous ionic systems

    Get PDF
    YesIonic systems with enhanced proton conductivity are widely viewed as promising electrolytes in fuel cells and batteries. Nevertheless, a major challenge toward their commercial applications is determination of the factors controlling the fast proton hopping in anhydrous conditions. To address this issue, we have studied novel proton-conducting materials formed via a chemical reaction of lidocaine base with a series of acids characterized by a various number of proton-active sites. From ambient and high pressure experimental data, we have found that there are fundamental differences in the conducting properties of the examined salts. On the other hand, DFT calculations revealed that the internal proton hopping within the cation structure strongly affects the pathways of mobility of the charge carrier. These findings offer a fresh look on the Grotthuss-type mechanism in protic ionic glasses as well as provide new ideas for the design of anhydrous materials with exceptionally high proton conductivity

    New insight into relaxation dynamics of an epoxy/hydroxy functionalized polybutadiene from dielectric and mechanical spectroscopy studies

    Get PDF
    Dielectric and mechanical spectroscopy methods have been employed to describe the temperature dependencies of the segmental and macromolecular relaxation rates in epoxy/hydroxy functionalized polybutadiene. Dielectric studies on the dynamics of segments of the polymer as well as the mobility of small ions trapped in the system have been carried out both as a function of temperature and pressure under isobaric and isothermal conditions, respectively
    corecore