324 research outputs found

    Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging

    Get PDF
    The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Thanks to its large extinction coefficient of 95,000 M-1 cm-1, mGarnet can be efficiently excited with 640-nm light on the red edge of its 598-nm excitation band. A large Stokes shift allows essentially the entire fluorescence emission to be collected even with 640-nm excitation, counterbalancing the lower fluorescence quantum yield of mGarnet, 9.1%, that is typical of far-red FPs. We demonstrate an excellent performance as a live-cell fusion marker in STED microscopy, using 640 nm excitation and 780 nm depletion wavelengths

    A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently established methods to identify viable and non-viable cells of cyanobacteria are either time-consuming (eg. plating) or preparation-intensive (eg. fluorescent staining). In this paper we present a new and fast viability assay for unicellular cyanobacteria, which uses red chlorophyll fluorescence and an unspecific green autofluorescence for the differentiation of viable and non-viable cells without the need of sample preparation.</p> <p>Results</p> <p>The viability assay for unicellular cyanobacteria using red and green autofluorescence was established and validated for the model organism <it>Synechocystis </it>sp. PCC 6803. Both autofluorescence signals could be observed simultaneously allowing a direct classification of viable and non-viable cells. The results were confirmed by plating/colony count, absorption spectra and chlorophyll measurements. The use of an automated fluorescence microscope and a novel ImageJ based image analysis plugin allow a semi-automated analysis.</p> <p>Conclusions</p> <p>The new method simplifies the process of viability analysis and allows a quick and accurate analysis. Furthermore results indicate that a combination of the new assay with absorption spectra or chlorophyll concentration measurements allows the estimation of the vitality of cells.</p

    Systematically missing confounders in individual participant data meta-analysis of observational cohort studies.

    Get PDF
    One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within-cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154,012 participants in 31 cohort

    Cancer incidence in type 2 diabetes patients - first results from a feasibility study of the D2C cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large prospective study in patients with type 2 diabetes (T2D), the German D2C cohort, is presently being enumerated to investigate risk factors of incident cancer in diabetic patients.</p> <p>Study setting</p> <p>A disease management program was offered, on a voluntary basis, to all T2D patients who were members of a statutory health insurance fund in Germany. This first feasibility report uses data from 26.742 T2D patients, who were 40 to 79 years old, resided in the Muenster District, and who were enrolled between June 2003 and July 2008. Cancer cases were identified through the regional Cancer Registry.</p> <p>Methods</p> <p>Invasive cancer cases were identified using probabilistic record linkage procedures and pseudonymised personal identifiers. Censoring date was December 31, 2008. We included only first cancers, leaving 12.650 male and 14.092 female T2D with a total of 88.778 person-years (py). We computed standardised incidence ratios (SIR) for external comparisons and we employed Cox regression models and hazard ratios (HR) within the cohort.</p> <p>Results</p> <p>We identified 759 first cancers among male T2D patients (18.7 per 1,000 py) and 605 among females (12.7 per 1,000 py). The risk of any incident cancer in T2D was raised (SIR = 1.14; 95% confidence interval [1.10 - 1.21]), in particular for cancer of the liver (SIR = 1.94 [1.15 - 2.94]) and pancreas (SIR = 1.45 [1.07-1.92]). SIRs decreased markedly with time after T2D diagnosis. In Cox models, adjusting for diabetes duration, body mass index and sex, insulin therapy was related to higher cancer risk (HR = 1.25 [1.17 - 1.33]). No effect was seen for metformin.</p> <p>Discussion</p> <p>Our study demonstrates feasibility of record linkage between DMP and cancer registries. These first cohort results confirm previous reports. It is envisaged to enhance this cohort by inclusion of further regions of the state, expansion of the follow-up times, and collection of a more detailed medication history.</p

    Stage-Specific Expression Profiling of Drosophila Spermatogenesis Suggests that Meiotic Sex Chromosome Inactivation Drives Genomic Relocation of Testis-Expressed Genes

    Get PDF
    In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation—MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes

    Increased High Density Lipoprotein-levels associated with Age-related Macular degeneration. Evidence from the EYE-RISK and E3 Consortia

    Get PDF
    Purpose Genetic and epidemiologic studies have shown that lipid genes and high-density lipoproteins (HDLs) are implicated in age-related macular degeneration (AMD). We studied circulating lipid levels in relationship to AMD in a large European dataset. Design Pooled analysis of cross-sectional data. Participants Individuals (N = 30 953) aged 50 years or older participating in the European Eye Epidemiology (E3) consortium and 1530 individuals from the Rotterdam Study with lipid subfraction data. Methods AMD features were graded on fundus photographs using the Rotterdam classification. Routine blood lipid measurements, genetics, medication, and potential confounders were extracted from the E3 database. In a subgroup of the Rotterdam Study, lipid subfractions were identified by the Nightingale biomarker platform. Random-intercepts mixed-effects models incorporating confounders and study site as a random effect were used to estimate associations. Main Outcome Measures AMD features and stage; lipid measurements. Results HDL was associated with an increased risk of AMD (odds ratio [OR], 1.21 per 1-mmol/l increase; 95% confidence interval [CI], 1.14–1.29), whereas triglycerides were associated with a decreased risk (OR, 0.94 per 1-mmol/l increase; 95% CI, 0.91–0.97). Both were associated with drusen size. Higher HDL raised the odds of larger drusen, whereas higher triglycerides decreases the odds. LDL cholesterol reached statistical significance only in the association with early AMD (P = 0.045). Regarding lipid subfractions, the concentration of extra-large HDL particles showed the most prominent association with AMD (OR, 1.24; 95% CI, 1.10–1.40). The cholesteryl ester transfer protein risk variant (rs17231506) for AMD was in line with increased HDL levels (P = 7.7 × 10–7), but lipase C risk variants (rs2043085, rs2070895) were associated in an opposite way (P = 1.0 × 10–6 and P = 1.6 × 10–4). Conclusions Our study suggested that HDL cholesterol is associated with increased risk of AMD and that triglycerides are negatively associated. Both show the strongest association with early AMD and drusen. Extra-large HDL subfractions seem to be drivers in the relationship with AMD, and variants in lipid genes play a more ambiguous role in this association. Whether systemic lipids directly influence AMD or represent lipid metabolism in the retina remains to be answered.</p

    Immunological and Cardiometabolic Risk Factors in the Prediction of Type 2 Diabetes and Coronary Events: MONICA/KORA Augsburg Case-Cohort Study

    Get PDF
    BACKGROUND: This study compares inflammation-related biomarkers with established cardiometabolic risk factors in the prediction of incident type 2 diabetes and incident coronary events in a prospective case-cohort study within the population-based MONICA/KORA Augsburg cohort. METHODS AND FINDINGS: Analyses for type 2 diabetes are based on 436 individuals with and 1410 individuals without incident diabetes. Analyses for coronary events are based on 314 individuals with and 1659 individuals without incident coronary events. Mean follow-up times were almost 11 years. Areas under the receiver-operating characteristic curve (AUC), changes in Akaike's information criterion (ΔAIC), integrated discrimination improvement (IDI) and net reclassification index (NRI) were calculated for different models. A basic model consisting of age, sex and survey predicted type 2 diabetes with an AUC of 0.690. Addition of 13 inflammation-related biomarkers (CRP, IL-6, IL-18, MIF, MCP-1/CCL2, IL-8/CXCL8, IP-10/CXCL10, adiponectin, leptin, RANTES/CCL5, TGF-β1, sE-selectin, sICAM-1; all measured in nonfasting serum) increased the AUC to 0.801, whereas addition of cardiometabolic risk factors (BMI, systolic blood pressure, ratio total/HDL-cholesterol, smoking, alcohol, physical activity, parental diabetes) increased the AUC to 0.803 (ΔAUC [95% CI] 0.111 [0.092-0.149] and 0.113 [0.093-0.149], respectively, compared to the basic model). The combination of all inflammation-related biomarkers and cardiometabolic risk factors yielded a further increase in AUC to 0.847 (ΔAUC [95% CI] 0.044 [0.028-0.066] compared to the cardiometabolic risk model). Corresponding AUCs for incident coronary events were 0.807, 0.825 (ΔAUC [95% CI] 0.018 [0.013-0.038] compared to the basic model), 0.845 (ΔAUC [95% CI] 0.038 [0.028-0.059] compared to the basic model) and 0.851 (ΔAUC [95% CI] 0.006 [0.003-0.021] compared to the cardiometabolic risk model), respectively. CONCLUSIONS: Inclusion of multiple inflammation-related biomarkers into a basic model and into a model including cardiometabolic risk factors significantly improved the prediction of type 2 diabetes and coronary events, although the improvement was less pronounced for the latter endpoint

    Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M

    Get PDF
    Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A DeltavjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Ophthalmology

    Get PDF
    PURPOSE: Age-related macular degeneration(AMD) is a common multifactorial disease in elderly with a prominent genetic basis. Many risk variants have been identified, but the interpretation is still challenging. We investigated the genetic distribution of AMD-associated risk variants in a large European consortium, calculated attributable, and pathway-specific genetic risks, and assessed the influence of lifestyle on genetic outcomes. DESIGN: Pooled analysis of cross-sectional data from the E3 consortium. PARTICIPANTS: 17.174 individuals aged 45+ participating in 6 population-based cohort studies, 2 clinic based studies, 1 case-control study. METHODS: AMD was diagnosed and graded based on fundus photographs. Data on genetics, lifestyle, and diet were harmonized and completed where necessary. Minor allele frequencies and population attributable fraction (PAF) were calculated per single nucleotide polymorphism (SNP). A total genetic risk score (GRS) and pathway-specific risk scores (complement, lipid, extra-cellular matrix, other) were constructed based on the dosage of SNPs and conditional beta's; a lifestyle score was constructed based on smoking and dietary intake. RESULTS: The risk variants with the largest difference between late AMD cases and controls, and the highest PAFs were located in ARMS2 (rs3750846) and CHF (rs570618 and rs10922109). Both risk increasing and protective variants had the highest PAFs. Combining all genetic variants, the total genetic risk score ranged from -3.50 to 4.63, was normally distributed and increased with AMD severity. Of the late AMD cases, 1581/1777 (89%) had a positive total GRS. The complement pathway and ARMS2 were by far the most prominent genetic pathways contributing to late AMD (positive GRS 90% of late cases), but risk in three pathways was most frequent (35% of late cases). Lifestyle was a strong determinant of the outcome in each genetic risk category; unfavorable lifestyle increased the risk of late AMD at least twofold. CONCLUSIONS: Genetic risk variants contribute to late AMD in the majority of cases. However, lifestyle factors have a strong influence on the outcome of genetic risk, and should be a strong focus in patient management. Genetic risks in ARMS2 and the complement pathway are present in the majority of late AMD, but are mostly combined with risks in other pathways
    corecore