39 research outputs found

    Validity of a Power Law Approach to Model Tablet Strength as a Function of Compaction Pressure

    Get PDF
    Designing quality into dosage forms should not be only based on qualitative or purely heuristic relations. A knowledge space must be generated, in which at least some mechanistic understanding is included. This is of particular interest for critical dosage form parameters like the strength of tablets. In line with this consideration, the scope of the work is to explore the validity range of a theoretically derived power law for the tensile strength of tablets. Different grades of microcrystalline cellulose and lactose, as well as mixtures thereof, were used to compress model tablets. The power law was found to hold true in a low pressure range, which agreed with theoretical expectation. This low pressure range depended on the individual material characteristics, but as a rule of thumb, the tablets having a porosity of more than about 30% or being compressed below 100MPa were generally well explained by the tensile strength relationship. Tablets at higher densities were less adequately described by the theory that is based on large-scale heterogeneity of the relevant contact points in the compact. Tablets close to the unity density therefore require other theoretical approaches. More research is needed to understand tablet strength in a wider range of compaction pressure

    A predictive model relating daily fluctuations in summer temperatures and mortality rates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality.</p> <p>Methods</p> <p>The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined.</p> <p>The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A "backward" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975–2002) used to estimate the model.</p> <p>Results</p> <p>The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day <it>t </it>and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model.</p> <p>Conclusion</p> <p>Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves.</p

    Charmonium Production in Deep Inelastic Scattering at HERA

    No full text
    The electroproduction of J/psi and psi(2S) mesons is studied in elastic, quasi-elastic and inclusive reactions for four momentum transfers 2 Q^2 80 GeV^2 and photon-proton centre of mass energies 25 W 180 GeV. The data were taken with the H1 detector at the electron proton collider HERA in the years 1995 to 1997. The total virtual photon-proton cross section for elastic J/psi production is measured as a function of Q^2 and W. The dependence of the production rates on the square of the momentum transfer from the proton (t) is extracted. Decay angular distributions are analysed and the ratio of the longitudinal and transverse cross sections is derived. The ratio of the cross sections for quasi-elastic psi(2S) and J/psi meson production is measured as a function of Q^2. The results are discussed in terms of theoretical models based upon perturbative QCD. Differential cross sections for inclusive and inelastic production of J/psi mesons are determined and predictions within two theoretical frameworks are compared with the data, the non-relativistic QCD factorization approach including colour octet and colour singlet contributions, and the model of Soft Colour Interactions

    Air pollution interventions and their impact on public health

    No full text
    Introduction: Numerous epidemiological studies have found a link between air pollution and health. We are reviewing a collection of published intervention studies with particular focus on studies assessing both improvements in air quality and associated health effects. Methods: Interventions, defined as events aimed at reducing air pollution or where reductions occurred as a side effect, e.g. strikes, German reunification, from the 1960s onwards were considered for inclusion. This review is not a complete record of all existing air pollution interventions. In total, 28 studies published in English were selected based on a systematic search of internet databases. Results: Overall air pollution interventions have succeeded at improving air quality. Consistently published evidence suggests that most of these interventions have been associated with health benefits, mainly by the way of reduced cardiovascular and/or respiratory mortality and/or morbidity. The decrease in mortality from the majority of the reviewed interventions has been estimated to exceed the expected predicted figures based on the estimates from time-series studies. Conclusion: There is consistent evidence that decreased air pollution levels following an intervention resulted in health benefits for the assessed population. © Swiss School of Public Health 2012

    Trends of nitrogen oxides in ambient air in nine European cities between 1999 and 2010

    No full text
    Legislation controlling vehicle emissions has been credited with a general downward trend in NOx (NO2+NO) concentrations in Europe since the 1990&apos;s. However, recent studies suggest that traffic (roadside) (TR) NO2 concentrations have not decreased as expected, and in some cases increased, most likely due to the use of oxidation catalysts and particle filters in diesel vehicles (EURO III, IV, V, VI). In this study we describe the time trends in NOx, NO2 and NO concentrations in 9 European cities comparing TR and urban background (UB) monitoring locations. In each city, we collected hourly city-specific NOx, NO, and NO2 data from one TR and one UB monitoring site for each year. We describe hourly, weekly, seasonal and inter-annual patterns for periods corresponding to the implementation dates of various EURO vehicle emission standards regulating NOx emissions. The diurnal patterns in all 9 cities strongly reflected morning and evening traffic. In addition, lower weekend concentrations were observed. The NOx concentrations from the TR sites remain unchanged in the majority of the cities over the study period. When stratified by 3 time periods according to the implementation of the EURO standards, an increasing NO2/NOx ratio in 7/9 cities with time was noted. However, over the same time period the NO/NO2 ratio decreased in 8/9 cities. A permanent inversion of the NO/NO2 ratio was observed to occur in 2003 in 5/9 cities. Our analyses of temporal and diurnal patterns of NOx in European cities show reductions in concentrations consistent with reductions in primary emissions likely arising from the implementation of successive EURO standards. The generally constant or increasing NO2 concentrations in the majority of the cities assessed over the study period underline the need of further regulative measures to meet the air quality standards and consequently to minimise adverse effects on human health. The ongoing collection and analysis of pollution concentrations across the EU is recommended to monitor trends in pollutants associated with adverse health effects. © 2015 Elsevier Ltd

    Trends of nitrogen oxides in ambient air in nine European cities between 1999 and 2010

    No full text
    Legislation controlling vehicle emissions has been credited with a general downward trend in NOx (NO2+NO) concentrations in Europe since the 1990's. However, recent studies suggest that traffic (roadside) (TR) NO2 concentrations have not decreased as expected, and in some cases increased, most likely due to the use of oxidation catalysts and particle filters in diesel vehicles (EURO III, IV, V, VI). In this study we describe the time trends in NOx, NO2 and NO concentrations in 9 European cities comparing TR and urban background (UB) monitoring locations. In each city, we collected hourly city-specific NOx, NO, and NO2 data from one TR and one UB monitoring site for each year. We describe hourly, weekly, seasonal and inter-annual patterns for periods corresponding to the implementation dates of various EURO vehicle emission standards regulating NOx emissions. The diurnal patterns in all 9 cities strongly reflected morning and evening traffic. In addition, lower weekend concentrations were observed. The NOx concentrations from the TR sites remain unchanged in the majority of the cities over the study period. When stratified by 3 time periods according to the implementation of the EURO standards, an increasing NO2/NOx ratio in 7/9 cities with time was noted. However, over the same time period the NO/NO2 ratio decreased in 8/9 cities. A permanent inversion of the NO/NO2 ratio was observed to occur in 2003 in 5/9 cities. Our analyses of temporal and diurnal patterns of NOx in European cities show reductions in concentrations consistent with reductions in primary emissions likely arising from the implementation of successive EURO standards. The generally constant or increasing NO2 concentrations in the majority of the cities assessed over the study period underline the need of further regulative measures to meet the air quality standards and consequently to minimise adverse effects on human health. The ongoing collection and analysis of pollution concentrations across the EU is recommended to monitor trends in pollutants associated with adverse health effects.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore