129 research outputs found

    Brazilian Green Propolis: Effects In Vitro and In Vivo on Trypanosoma cruzi

    Get PDF
    The composition of a Brazilian green propolis ethanolic extract (Et-Bra) and its effect on Trypanosoma cruzi trypomastigotes and other pathogenic microorganisms have already been reported. Here, we further investigated Et-Bra targets in T. cruzi and its effect on experimental infection of mice. The IC50/4 days for inhibition of amastigote proliferation was 8.5 ± 1.8 μg mL−1, with no damage to the host cells. In epimastigotes Et-Bra induced alterations in reservosomes, Golgi complex and mitochondrion. These effects were confirmed by flow cytometry analysis. In trypomastigotes, Et-Bra led to the loss of plasma membrane integrity. The in vitro studies indicate that Et-Bra interferes in the functionality of the plasma membrane in trypomastigotes and of reservosomes and mitochondrion in epimastigotes. Acutely infected mice were treated orally with Et-Bra and the parasitemia, mortality and GPT, GOT, CK and urea levels were monitored. The extract (25–300 mg kg−1 body weight/day for 10 days) reduced the parasitemia, although not at significant levels; increased the survival of the animals and did not induce any hepatic, muscular lesion or renal toxicity. Since Et-Bra was not toxic to the animals, it could be assayed in combination with other drugs. Et-Bra could be a potential metacyclogenesis blocker, considering its effect on reservosomes, which are an important energy source during parasite differentiation

    KITD816V mutation in blood for the diagnostic screening of systemic mastocytosis and mast cell activation syndromes

    Get PDF
    [Background]: Current diagnostic algorithms for systemic mastocytosis (SM) rely on the detection of KITD816V in blood to trigger subsequent bone marrow (BM) investigations. [Methods]: Here, we correlated the KITD816V mutational status of paired blood and BM samples from 368 adults diagnosed with mast cell activation syndrome (MCAS) and mastocytosis and determined the potential utility of investigating KITD816V in genomic DNA from blood-purified myeloid cell populations to increase diagnostic sensitivity. In a subset of 69 patients, we further evaluated the kinetics of the KITD816V cell burden during follow-up and its association with disease outcome. [Results]: Our results showed a high correlation (P < .0001) between the KITD816V mutation burden in blood and BM (74% concordant samples), but with a lower mean of KITD816V-mutated cells in blood (P = .0004) and a high rate of discordant BM+/blood− samples particularly among clonal MCAS (73%) and BM mastocytosis (51%), but also in cutaneous mastocytosis (9%), indolent SM (15%), and well-differentiated variants of indolent SM (7%). Purification of different compartments of blood-derived myeloid cells was done in 28 patients who were BM mast cell (MC)+/blood− for KITD816V, revealing KITD816V-mutated eosinophils (56%), basophils (25%), neutrophils (29%), and/or monocytes (31%) in most (61%) patients. Prognostically, the presence of ≥3.5% KITD816V-mutated cells (P < .0001) and an unstable KITD816V mutation cell burden (P < .0001) in blood and/or BM were both associated with a significantly shortened progression-free survival (PFS). [Conclusions]: These results confirm the high specificity but limited sensitivity of KITD816V analysis in whole blood for the diagnostic screening of SM and other primary MCAS, which might be overcome by assessing the mutation in blood-purified myeloid cell populations.This work was supported by grants from the Fundación Española de Mastocitosis (Madrid, Spain; grant number: FEM2021-SAM) and Blueprint Medicines Corporation (Cambridge, MA). PNN was supported by a grant of Government of Castilla y León (Orden EDU 875 2021), Spain; co-financed with the European Social Fund (BDNS (Identif.): 540787). We also thank the Agencia Estatal de Investigación (AEI) and European Regional Development Fund (FEDER) for the grant (EQC2019-005419-P) within the Subprograma Estatal de Infraestructuras de Investigación y Equipamiento Científico Técnico de 2019

    Frequency and prognostic impact of blood-circulating tumor mast cells in mastocytosis

    Get PDF
    Circulating tumor mast cells (CTMCs) have been identified in the blood of a small number of patients with advanced systemic mastocytosis (SM). However, data are limited about their frequency and prognostic impact in patients with MC activation syndrome (MCAS), cutaneous mastocytosis (CM) and nonadvanced SM. We investigated the presence of CTMCs and MC-committed CD34+ precursors in the blood of 214 patients with MCAS, CM, or SM using highly sensitive next-generation flow cytometry. CTMCs were detected at progressively lower counts in almost all patients with advanced SM (96%) and smoldering SM (SSM; 100%), nearly half of the patients (45%) with indolent SM (ISM), and a few patients (7%) with bone marrow (BM) mastocytosis but were systematically absent in patients with CM and MCAS (P < .0001). In contrast to CTMC counts, the number of MC-committed CD34+ precursors progressively decreased from MCAS, CM, and BM mastocytosis to ISM, SSM, and advanced SM (P < .0001). Clinically, the presence (and number) of CTMCs in blood of patients with SM in general and nonadvanced SM (ISM and BM mastocytosis) in particular was associated with more adverse features of the disease, poorer-risk prognostic subgroups as defined by the International Prognostic Scoring System for advanced SM (P < .0001) and the Global Prognostic Score for mastocytosis (P < .0001), and a significantly shortened progression-free survival (P < .0001) and overall survival (P = .01). On the basis of our results, CTMCs emerge as a novel candidate biomarker of disseminated disease in SM that is strongly associated with advanced SM and poorer prognosis in patients with ISM

    Absence of Fas-L aggravates renal injury in acute Trypanosoma cruzi infection

    Get PDF
    Trypanosoma cruzi infection induces diverse alterations in immunocompetent cells and organs, myocarditis and congestive heart failure. However, the physiological network of disturbances imposed by the infection has not been addressed thoroughly. Regarding myocarditis induced by the infection, we observed in our previous work that Fas-L-/- mice (gld/gld) have very mild inflammatory infiltration when compared to BALB/c mice. However, all mice from both lineages die in the early acute phase. Therefore, in this work we studied the physiological connection relating arterial pressure, renal function/damage and cardiac insufficiency as causes of death. Our results show that a broader set of dysfunctions that could be classified as a cardio/anaemic/renal syndrome is more likely responsible for cardiac failure and death in both lineages. However, gld/gld mice had very early glomerular deposition of IgM and a more intense renal inflammatory response with reduced renal filtration, which is probably responsible for the premature death in the absence of significant myocarditis in gld/gld.Instituto Oswaldo Cruz-Fiocruz Laboratório de Biologia CelularUniversidade Federal do Rio de Janeiro Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal Fluminense Instituto Biomédico Departamento de Fisiologia e FarmacologiaUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Disciplina de NefrologiaCentro de Criação de Animais de Laboratório Departamento de Controle de Qualidade AnimalUNIFESP, EPM, Disciplina de NefrologiaSciEL

    Setting performance indicators for coastal marine protected areas: An expert-based methodology

    Get PDF
    Marine Protected Areas (MPAs) require effective indicators to assess their performance, in compliance with the goals of relevant national and international commitments. Achieving and prioritizing shortlists of multidisciplinary indicators demands a significant effort from specialists to depict the multiple conservation and socioeconomic interests, and the large complexity of natural systems. The present paper describes a structured expert-based methodology (process and outputs) to co-define a list of multidisciplinary MPA performance indicators. This work was promoted by the management authority of coastal MPAs in mainland Portugal to gather a consensual and feasible list of indicators that would guide the design of a future national monitoring program. Hence, Portuguese coastal MPAs served as a case study to develop such a process between 2019 and 2020. In the end, participants (1) agreed on a shortlist of prioritized indicators (i.e., environmental, governance, and socioeconomic indicators) and (2) defined minimum monitoring frequencies for the indicators in this list, compatible with the potential replicability of the associated survey methods. The present approach recommends that management plans incorporate monitoring procedures and survey methods, with a validated list of indicators and associated monitoring periodicity, agreed among researchers, MPA managers and governance experts. The proposed methodology, and the lessons learned from it, can support future processes aiming to define and prioritize MPA performance indicatorsFundação para a Ciência e Tecnologia - FCT, European Maritime and Fisheries Fund (EMFF)info:eu-repo/semantics/publishedVersio

    Altered innate immune profile in blood of systemic mastocytosis patients

    Get PDF
    [Background]: Mast cells (MC) from systemic mastocytosis (SM) patients release MC mediators that lead to an altered microenvironment with potential consequences on innate immune cells, such as monocytes and dendritic cells (DC). Here we investigated the distribution and functional behaviour of different populations of blood monocytes and DC among distinct diagnostic subtypes of SM. [Methods]: Overall, we studied 115 SM patients - 45 bone marrow mastocytosis (BMM), 61 indolent SM (ISM), 9 aggressive SM (ASM)- and 32 healthy donors (HD). Spontaneous and in vitro-stimulated cytokine production by blood monocytes, and their plasma levels, together with the distribution of different subsets of blood monocytes and DCs, were investigated. [Results]: SM patients showed increased plasma levels and spontaneous production by blood monocytes of IL1β, IL6, IL8, TNFα and IL10, associated with an exhausted ability of LPS + IFNγ-stimulated blood monocytes to produce IL1β and TGFβ. SM (particularly ISM) patients also showed decreased counts of total monocytes, at the expense of intermediate monocytes and non-classical monocytes. Interestingly, while ISM and ASM patients had decreased numbers of plasmacytoid DC and myeloid DC (and their major subsets) in blood, an expansion of AXL+ DC was specifically encountered in BMM cases. [Conclusion]: These results demonstrate an altered distribution of blood monocytes and DC subsets in SM associated with constitutive activation of functionally impaired blood monocytes and increased plasma levels of a wide variety of inflammatory cytokines, reflecting broad activation of the innate immune response in mastocytosis.This study has been funded by Instituto de Salud Carlos III (ISCIII) (grant number PI19/01166; and Centro de Investigación Biomédica en Red de Cáncer [CIBERONC] programme, grant number CB16/12/00400) and co-funded by the European Union (EU). We thank the support of the Spanish National DNA Bank Carlos III (www.bancoadn.org; biobank ID B.0000716; supported by ISCIII and co-founded by EU [grant number PT20/00085]) for providing plasma samples. APP was supported by a grant of the Government of Castilla y León (Orden EDU/556/2019), Spain; co-financed with the “European Regional Development Fund” (BDNS, Identif.:422058). We thank the support of the Spanish Association of Mastocytosis and Related Diseases

    Proposed global prognostic score for systemic mastocytosis: a retrospective prognostic modelling study

    Get PDF
    [Background]: Several risk stratification models have been proposed in recent years for systemic mastocytosis but have not been directly compared. Here we designed and validated a risk stratification model for progression-free survival (PFS) and overall survival (OS) in systemic mastocytosis on the basis of all currently available prognostic factors, and compared its predictive capacity for patient outcome with that of other risk scores.[Methods]: We did a retrospective prognostic modelling study based on patients diagnosed with systemic mastocytosis between March 1, 1983, and Oct 11, 2019. In a discovery cohort of 422 patients from centres of the Spanish Network on Mastocytosis (REMA), we evaluated previously identified, independent prognostic features for prognostic effect on PFS and OS by multivariable analysis, and designed a global prognostic score for mastocytosis (GPSM) aimed at predicting PFS (GPSM-PFS) and OS (GPSM-OS) by including only those variables that showed independent prognostic value (p<0·05). The GPSM scores were validated in an independent cohort of 853 patients from centres in Europe and the USA, and compared with pre-existing risk models in the total patient series (n=1275), with use of Harrells' concordance index (C-index) as a readout of the ability of each model to risk-stratify patients according to survival outcomes.[Findings]: Our GPSM-PFS and GPSM-OS models were based on unique combinations of independent prognostic factors for PFS (platelet count ≤100 × 109 cells per L, serum β2-microglobulin ≥2·5 μg/mL, and serum baseline tryptase ≥125 μg/L) and OS (haemoglobin ≤110 g/L, serum alkaline phosphatase ≥140 IU/L, and at least one mutation in SRSF2, ASXL1, RUNX1, or DNMT3A). The models showed clear discrimination between low-risk and high-risk patients in terms of worse PFS and OS prognoses in the discovery and validation cohorts, and further discrimination of intermediate-risk patients. The GPSM-PFS score was an accurate predictor of PFS in systemic mastocytosis (C-index 0·90 [95% CI 0·87–0·93], vs values ranging from 0·85 to 0·88 for pre-existing models), particularly in non-advanced systemic mastocytosis (C-index 0·85 [0·76–0·92], within the range for pre-existing models of 0·80 to 0·93). Additionally, the GPSM-OS score was able to accurately predict OS in the entire cohort (C-index 0·92 [0·89–0·94], vs 0·67 to 0·90 for pre-existing models), and showed some capacity to predict OS in advanced systemic mastocytosis (C-index 0·72 [0·66–0·78], vs 0·64 to 0·73 for pre-existing models).[Interpretation]: All evaluated risk classifications predicted survival outcomes in systemic mastocytosis. The REMA-PFS and GPSM-PFS models for PFS, and the International Prognostic Scoring System for advanced systemic mastocytosis and GPSM-OS model for OS emerged as the most accurate models, indicating that robust prognostication might be prospectively achieved on the basis of biomarkers that are accessible in diagnostic laboratories worldwide.Carlos III Health Institute, European Regional Development Fund, Spanish Association of Mastocytosis and Related Diseases, Rare Diseases Strategy of the Spanish National Health System, Junta of Castile and León, Charles and Ann Johnson Foundation, Stanford Cancer Institute Innovation Fund, Austrian Science Fund

    Super-resolution imaging as a method to study GPCR dimers and higher-order oligomers

    Get PDF
    The study of G protein-coupled receptor (GPCR) dimers and higher-order oligomers has unveiled mechanisms for receptors to diversify signaling and potentially uncover novel therapeutic targets. The functional and clinical significance of these receptor–receptor associations has been facilitated by the development of techniques and protocols, enabling researchers to unpick their function from the molecular interfaces, to demonstrating functional significance in vivo, in both health and disease. Here we describe our methodology to study GPCR oligomerization at the single-molecule level via super-resolution imaging. Specifically, we have employed photoactivated localization microscopy, with photoactivatable dyes (PD-PALM) to visualize the spatial organization of these complexes to <10 nm resolution, and the quantitation of GPCR monomer, dimer, and oligomer in both homomeric and heteromeric forms. We provide guidelines on optimal sample preparation, imaging parameters, and necessary controls for resolving and quantifying single-molecule data. Finally, we discuss advantages and limitations of this imaging technique and its potential future applications to the study of GPCR function
    corecore