78 research outputs found

    Diabetes: cost of illness in Norway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes mellitus places a considerable burden on patients in terms of morbidity and mortality and on society in terms of costs. Costs related to diabetes are expected to increase due to increasing prevalence of type 2 diabetes. The aim of this study was to estimate the health care costs attributable to type 1 and type 2 diabetes in Norway in 2005.</p> <p>Methods</p> <p>Data on inpatient hospital services, outpatient clinic visits, physician services, drugs, medical equipment, nutrition guidance, physiotherapy, acupuncture, foot therapy and indirect costs were collected from national registers and responses to a survey of 584 patients with diabetes. The study was performed with a prevalence approach. Uncertainty was explored by means of bootstrapping.</p> <p>Results</p> <p>When hospital stays with diabetes as a secondary diagnosis were excluded, the total costs were €293 million, which represents about 1.4% of the total health care expenditure. Pharmaceuticals accounted for €95 million (32%), disability pensions €48 million (16%), medical devices €40 million (14%) and hospital admissions €21 million (7%). Patient expenditures for acupuncture, physiotherapy and foot therapy were many times higher than expenditure for nutritional guidance. Indirect costs (lost production from job absenteeism) accounted for €70.1 million (24% of the €293 million) and included sick leave (€16.7 million), disability support and disability pensions (€48.2 million) and other indirect costs (€5.3 million). If all diabetes related hospital stays are included (primary- and secondary diagnosis) total costs amounts to €535 million, about 2.6% of the total health care expenditure in Norway.</p> <p>Conclusions</p> <p>Diabetes represents a considerable burden to society in terms of health care costs and productivity losses.</p

    Prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many adults experience bothersome neck/shoulder pain. While research and treatment strategies often focus on the upper trapezius, other neck/shoulder muscles may be affected as well. The aim of the present study is to evaluate the prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain.</p> <p>Methods</p> <p>Clinical neck/shoulder examination at two large office workplaces in Copenhagen, Denmark. 174 women and 24 men (aged 25-65 years) with nonspecific neck/shoulder pain for a duration of at least 30 days during the previous year and a pain intensity of at least 2 on a modified VAS-scale of 0-10 participated. Exclusion criteria were traumatic injuries or other serious chronic disease. Using a standardized finger pressure of 2 kg, palpable tenderness were performed of eight anatomical neck/shoulder locations in the left and right side on a scale of 'no tenderness', 'some tenderness' and 'severe tenderness'.</p> <p>Results</p> <p>In women, the levator scapulae, neck extensors and infraspinatus showed the highest prevalence of severe tenderness (18-30%). In comparison, the prevalence of severe tenderness in the upper trapezius, occipital border and supraspinatus was 13-19%. Severe tenderness of the medial deltoid was least prevalent (0-1%). In men, the prevalence of severe tenderness in the levator scapulae was 13-21%, and ranged between 0-8% in the remainder of the examined anatomical locations.</p> <p>Conclusions</p> <p>A high prevalence of tenderness exists in several anatomical locations of the neck/shoulder complex among adults with nonspecific neck/shoulder pain. Future research should focus on several neck/shoulder muscles, including the levator scapulae, neck extensors and infraspinatus, and not only the upper trapezius.</p> <p>Trial Registration</p> <p><a href="http://www.controlled-trials.com/ISRCTN60264809">ISRCTN60264809</a></p

    Knee kinematics and kinetics in former soccer players with a 16-year-old ACL injury – the effects of twelve weeks of knee-specific training

    Get PDF
    BACKGROUND: Training of neuromuscular control has become increasingly important and plays a major role in rehabilitation of subjects with an injury to the anterior cruciate ligament (ACL). Little is known, however, of the influence of this training on knee stiffness during loading. Increased knee stiffness occurs as a loading strategy of ACL-injured subjects and is associated with increased joint contact forces. Increased or altered joint loads contribute to the development of osteoarthritis. The aim of the study was to determine if knee stiffness, defined by changes in knee kinetics and kinematics of gait, step activity and cross-over hop could be reduced through a knee-specific 12-week training programme. METHODS: A 3-dimensional motion analysis system (VICON) and a force plate (AMTI) were used to calculate knee kinetics and kinematics before and after 12 weeks of knee-specific training in 12 males recruited from a cohort with ACL injury 16 years earlier. Twelve uninjured males matched for age, sex, BMI and activity level served as a reference group. Self-reported patient-relevant data were obtained by the KOOS questionnaire. RESULTS: There were no significant changes in knee stiffness during gait and step activity after training. For the cross-over hop, increased peak knee flexion during landing (from 44 to 48 degrees, p = 0.031) and increased internal knee extensor moment (1.28 to 1.55 Nm/kg, p = 0.017) were seen after training, indicating reduced knee stiffness. The KOOS sport and recreation score improved from 70 to 77 (p = 0.005) and was significantly correlated with the changes in knee flexion during landing for the cross-over hop (r = 0.6, p = 0.039). CONCLUSION: Knee-specific training improved lower extremity kinetics and kinematics, indicating reduced knee stiffness during demanding hop activity. Self-reported sport and recreational function correlated positively with the biomechanical changes supporting a clinical importance of the findings. Further studies are needed to confirm these results in women and in other ACL injured populations

    Exercise training with dietary counselling increases mitochondrial chaperone expression in middle-aged subjects with impaired glucose tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance and diabetes are associated with increased oxidative stress and impairment of cellular defence systems. Our purpose was to investigate the interaction between glucose metabolism, antioxidative capacity and heat shock protein (HSP) defence in different skeletal muscle phenotypes among middle-aged obese subjects during a long-term exercise and dietary intervention. As a sub-study of the Finnish Diabetes Prevention Study (DPS), 22 persons with impaired glucose tolerance (IGT) taking part in the intervention volunteered to give samples from the <it>vastus lateralis </it>muscle. Subjects were divided into two sub-groups (IGTslow and IGTfast) on the basis of their baseline myosin heavy chain profile. Glucose metabolism, oxidative stress and HSP expressions were measured before and after the 2-year intervention.</p> <p>Results</p> <p>Exercise training, combined with dietary counselling, increased the expression of mitochondrial chaperones HSP60 and glucose-regulated protein 75 (GRP75) in the <it>vastus lateralis </it>muscle in the IGTslow group and that of HSP60 in the IGTfast group. In cytoplasmic chaperones HSP72 or HSP90 no changes took place. In the IGTslow group, a significant positive correlation between the increased muscle content of HSP60 and the oxygen radical absorbing capacity values and, in the IGTfast group, between the improved VO<sub>2max </sub>value and the increased protein expression of GRP75 were found. Serum uric acid concentrations decreased in both sub-groups and serum protein carbonyl concentrations decreased in the IGTfast group.</p> <p>Conclusion</p> <p>The 2-year intervention up-regulated mitochondrial HSP expressions in middle-aged subjects with impaired glucose tolerance. These improvements, however, were not correlated directly with enhanced glucose tolerance.</p

    Fat Oxidation, Fitness and Skeletal Muscle Expression of Oxidative/Lipid Metabolism Genes in South Asians: Implications for Insulin Resistance?

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4&#177;5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77&#177;2.02 vs 6.55&#177;2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46&#177;2.20 vs 6.00&#177;1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.&lt;/p&gt

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF

    A systematic review of randomised controlled trials assessing effectiveness of prosthetic and orthotic interventions.

    Get PDF
    BACKGROUND: Assistive products are items which allow older people and people with disabilities to be able to live a healthy, productive and dignified life. It has been estimated that approximately 1.5% of the world's population need a prosthesis or orthosis. OBJECTIVE: The objective of this study was to systematically identify and review the evidence from randomized controlled trials assessing effectiveness and cost-effectiveness of prosthetic and orthotic interventions. METHODS: Literature searches, completed in September 2015, were carried out in fourteen databases between years 1995 and 2015. The search results were independently screened by two reviewers. For the purpose of this manuscript, only randomized controlled trials which examined interventions using orthotic or prosthetic devices were selected for data extraction and synthesis. RESULTS: A total of 342 randomised controlled trials were identified (319 English language and 23 non-English language). Only 4 of these randomised controlled trials examined prosthetic interventions and the rest examined orthotic interventions. These orthotic interventions were categorised based on the medical conditions/injuries of the participants. From these studies, this review focused on the medical condition/injuries with the highest number of randomised controlled trials (osteoarthritis, fracture, stroke, carpal tunnel syndrome, plantar fasciitis, anterior cruciate ligament, diabetic foot, rheumatoid and juvenile idiopathic arthritis, ankle sprain, cerebral palsy, lateral epicondylitis and low back pain). The included articles were assessed for risk of bias using the Cochrane Risk of Bias tool. Details of the clinical population examined, the type of orthotic/prosthetic intervention, the comparator/s and the outcome measures were extracted. Effect sizes and odds ratios were calculated for all outcome measures, where possible. CONCLUSIONS: At present, for prosthetic and orthotic interventions, the scientific literature does not provide sufficient high quality research to allow strong conclusions on their effectiveness and cost-effectiveness
    corecore