16 research outputs found

    Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload

    Get PDF
    RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/-)) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5(-/-) developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5(-/-) compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/-) mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly

    The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation

    No full text
    Background & Aims A strong association between human inflammatory biliary diseases and gut inflammation has led to the hypothesis that gut microbes and lymphocytes activated in the intestine play a role in biliary inflammation. The NOD.c3c4 mouse model develops spontaneous biliary inflammation in extra- and intra-hepatic bile ducts. We aimed to clarify the role of the gut microbiota in the biliary disease of NOD.c3c4 mice. Methods We sampled cecal content and mucosa from conventionally raised (CONV-R) NOD.c3c4 and NOD control mice, extracted DNA and performed 16S rRNA sequencing. NOD.c3c4 mice were rederived into a germ free (GF) facility and compared with CONV-R NOD.c3c4 mice. NOD.c3c4 mice were also co-housed with NOD mice and received antibiotics from weaning. Results The gut microbial profiles of mice with and without biliary disease were different both before and after rederivation (unweighted UniFrac-distance). GF NOD.c3c4 mice had less distended extra-hepatic bile ducts than CONV-R NOD.c3c4 mice, while antibiotic treated mice showed reduction of biliary infarcts. GF animals also showed a reduction in liver weight compared with CONV-R NOD.c3c4 mice, and this was also observed in antibiotic treated NOD.c3c4 mice. Co-housing of NOD and NOD.c3c4 mice indicated that the biliary phenotype was neither transmissible nor treatable by co-housing with healthy mice. Conclusions NOD.c3c4 and NOD control mice show marked differences in the gut microbiota. Germ free NOD.c3c4 mice develop a milder biliary affection compared with conventionally raised NOD.c3c4 mice. Our findings suggest that the intestinal microbiota contributes to disease in this murine model of biliary inflammation. Lay Summary Mice with liver disease have a gut microflora (microbiota) that differs substantially from normal mice. When these mice, that under normal circumstances spontaneously develops disease in their bile ducts, are raised in an environment devoid of bacteria, the disease in the bile ducts diminishes. Overall this clearly indicates that the bacteria in the gut (the gut microbiota) influences the liver disease in these mice

    Allogeneic bone marrow transplantation for patients with treatment-refractory Crohn's Disease

    No full text
    Background & aims: Durable remissions of Crohn's Disease (CD) have followed myeloablative conditioning therapy and allogeneic marrow transplantation. For patients with treatment-refractory disease, we used reduced-intensity conditioning to minimize toxicity, marrow from donors with low Polygenic Risk Scores for CD as cell sources, and protracted immune suppression to lower the risk of graft-versus-host disease (GVHD). Our aim was to achieve durable CD remissions while minimizing transplant-related complications. Methods: DNA from patients and their HLA-matched unrelated donors was genotyped and Polygenic Risk Scores calculated. Donor marrow was infused following non-myeloablative conditioning. Patient symptoms and endoscopic findings were documented at intervals after transplant. Results: We screened 807 patients, 143 of whom met eligibility criteria; 2 patients received allografts. Patient 1 had multiple complications and died at day 332 from respiratory failure. Patient 2 had resolution of CD symptoms until day 178 when CD recurred, associated with persistent host chimerism in both peripheral blood and intestinal mucosa. Withdrawal of immune suppression was followed by dominant donor immune chimerism in peripheral blood and resolution of CD findings. Over time, mucosal T-cells became donor-dominant. At 5 years after allografting, Patient 2 remained off all medications but had mild symptoms related to a jejunal stricture that required stricturoplasty at 6 years. At 8 years, she remains stable off medications. Conclusions: The kinetics of immunologic chimerism after allogeneic marrow transplantation for CD patients depends on the intensity of the conditioning regimen and the magnitude of immune suppression. One patient achieved durable improvement of her previously refractory CD only after establishing donor immunologic chimerism in intestinal mucosa. Her course provides proof-of-principal for allografting as a potential treatment for refractory CD, but an immunoablative conditioning regimen should be considered for future studies.(ClinicalTrials.gov, NCT01570348

    Sodium accumulation promotes diastolic dysfunction in end-stage heart failure following Serca2 knockout

    No full text
    Alterations in trans-sarcolemmal and sarcoplasmic reticulum (SR) Ca2+ fluxes may contribute to impaired cardiomyocyte contraction and relaxation in heart failure. We investigated the mechanisms underlying heart failure progression in mice with conditional, cardiomyocyte-specific excision of the SR Ca2+-ATPase (SERCA) gene. At 4 weeks following gene deletion (4-week KO) cardiac function remained near normal values. However, end-stage heart failure developed by 7 weeks (7-week KO) as systolic and diastolic performance declined. Contractions in isolated myocytes were reduced between 4- and 7-week KO, and relaxation was slowed. Ca2+ transients were similarly altered. Reduction in Ca2+ transient magnitude resulted from complete loss of SR Ca2+ release between 4- and 7-week KO, due to loss of a small remaining pool of SERCA2. Declining SR Ca2+ release was partly offset by increased L-type Ca2+ current, which was facilitated by AP prolongation in 7-week KO. Ca2+ entry via reverse-mode Na+–Ca2+ exchange (NCX) was also enhanced. Up-regulation of NCX and plasma membrane Ca2+-ATPase increased Ca2+ extrusion rates in 4-week KO. Diastolic dysfunction in 7-week KO resulted from further SERCA2 loss, but also impaired NCX-mediated Ca2+ extrusion following Na+ accumulation. Reduced Na+-K+-ATPase activity contributed to the Na+ gain. Normalizing [Na+] by dialysis increased the Ca2+ decline rate in 7-week KO beyond 4-week values. Thus, while SERCA2 loss promotes both systolic and diastolic dysfunction, Na+ accumulation additionally impairs relaxation in this model. Our observations indicate that if cytosolic Na+ gain is prevented, up-regulated Ca2+ extrusion mechanisms can maintain near-normal diastolic function in the absence of SERCA2
    corecore