623 research outputs found

    A quantitative probabilistic investigation into the accumulation of rounding errors in numerical ODE solution.

    Get PDF
    We examine numerical rounding errors of some deterministic solvers for systems of ordinary differential equations (ODEs) from a probabilistic viewpoint. We show that the accumulation of rounding errors results in a solution which is inherently random and we obtain the theoretical distribution of the trajectory as a function of time, the step size and the numerical precision of the computer. We consider, in particular, systems which amplify the effect of the rounding errors so that over long time periods the solutions exhibit divergent behaviour. By performing multiple repetitions with different values of the time step size, we observe numerically the random distributions predicted theoretically. We mainly focus on the explicit Euler and fourth order Runge–Kutta methods but also briefly consider more complex algorithms such as the implicit solvers VODE and RADAU5 in order to demonstrate that the observed effects are not specific to a particular method

    Nekhoroshev theorem for the periodic Toda lattice

    Full text link
    The periodic Toda lattice with NN sites is globally symplectomorphic to a two parameter family of N1N-1 coupled harmonic oscillators. The action variables fill out the whole positive quadrant of RN1\R^{N-1}. We prove that in the interior of the positive quadrant as well as in a neighborhood of the origin, the Toda Hamiltonian is strictly convex and therefore Nekhoroshev's theorem applies on (almost) all parts of phase space.Comment: 28 page

    Some critical remarks on a new numerical method for simulation of dynamical systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68690/2/10.1177_003754976600600210.pd

    Global Birkhoff coordinates for the periodic Toda lattice

    Full text link
    In this paper we prove that the periodic Toda lattice admits globally defined Birkhoff coordinates.Comment: 32 page

    Texture and shape of two-dimensional domains of nematic liquid crystal

    Get PDF
    We present a generalized approach to compute the shape and internal structure of two-dimensional nematic domains. By using conformal mappings, we are able to compute the director field for a given domain shape that we choose from a rich class, which includes drops with large and small aspect ratios, and sharp domain tips as well as smooth ones. Results are assembled in a phase diagram that for given domain size, surface tension, anchoring strength, and elastic constant shows the transitions from a homogeneous to a bipolar director field, from circular to elongated droplets, and from sharp to smooth domain tips. We find a previously unaccounted regime, where the drop is nearly circular, the director field bipolar and the tip rounded. We also find that bicircular director fields, with foci that lie outside the domain, provide a remarkably accurate description of the optimal director field for a large range of values of the various shape parameters.Comment: 12 pages, 10 figure

    The structure of atomic nitrogen adsorbed on Fe(100)

    Get PDF
    Nitrogen atoms adsorbed on a Fe(100) surface cause the formation of an ordered c(2 × 2) overlayer with coverage 0.5. A structure analysis was performed by comparing experimental LEED I–V spectra with the results of multiple scattering model calculations. The N atoms were found to occupy fourfold hollow sites, with their plane 0.27 Å above the plane of the surface Fe atoms. In addition, nitrogen adsorption causes an expansion of the two topmost Fe layers by 10% (= 0.14 Å). The minimum r-factor for this structure analysis is about 0.2 for a total of 16 beams. The resulting atomic arrangement is similar to that in the (002) plane of bulk Fe4N, thus supporting the view of a “surface nitride” and providing a consistent picture of the structural and bonding properties of this surface phase

    Simple and Nearly Optimal Polynomial Root-finding by Means of Root Radii Approximation

    Full text link
    We propose a new simple but nearly optimal algorithm for the approximation of all sufficiently well isolated complex roots and root clusters of a univariate polynomial. Quite typically the known root-finders at first compute some crude but reasonably good approximations to well-conditioned roots (that is, those isolated from the other roots) and then refine the approximations very fast, by using Boolean time which is nearly optimal, up to a polylogarithmic factor. By combining and extending some old root-finding techniques, the geometry of the complex plane, and randomized parametrization, we accelerate the initial stage of obtaining crude to all well-conditioned simple and multiple roots as well as isolated root clusters. Our algorithm performs this stage at a Boolean cost dominated by the nearly optimal cost of subsequent refinement of these approximations, which we can perform concurrently, with minimum processor communication and synchronization. Our techniques are quite simple and elementary; their power and application range may increase in their combination with the known efficient root-finding methods.Comment: 12 pages, 1 figur

    Pioneer 10 Doppler data analysis: disentangling periodic and secular anomalies

    Full text link
    This paper reports the results of an analysis of the Doppler tracking data of Pioneer probes which did show an anomalous behaviour. A software has been developed for the sake of performing a data analysis as independent as possible from that of J. Anderson et al. \citep{anderson}, using the same data set. A first output of this new analysis is a confirmation of the existence of a secular anomaly with an amplitude about 0.8 nms2^{-2} compatible with that reported by Anderson et al. A second output is the study of periodic variations of the anomaly, which we characterize as functions of the azimuthal angle φ\varphi defined by the directions Sun-Earth Antenna and Sun-Pioneer. An improved fit is obtained with periodic variations written as the sum of a secular acceleration and two sinusoids of the angles φ\varphi and 2φ2\varphi. The tests which have been performed for assessing the robustness of these results are presented.Comment: 13 pages, 6 figures, minor amendment

    On Kaluza's sign criterion for reciprocal power series

    Full text link
    T. Kaluza has given a criterion for the signs of the power series of a function that is the reciprocal of another power series. In this note the sharpness of this condition is explored and various examples in terms of the Gaussian hypergeometric series are given. A criterion for the monotonicity of the quotient of two power series due to M. Biernacki and J. Krzy\.z is applied.Comment: 13 page
    corecore