254 research outputs found

    Inelastic Neutron Scattering Analysis with Time-Dependent Gaussian-Field Models

    Full text link
    Converting neutron scattering data to real-space time-dependent structures can only be achieved through suitable models, which is particularly challenging for geometrically disordered structures. We address this problem by introducing time-dependent clipped Gaussian field models. General expressions are derived for all space- and time-correlation functions relevant to coherent inelastic neutron scattering, for multiphase systems and arbitrary scattering contrasts. Various dynamic models are introduced that enable one to add time-dependence to any given spatial statistics, as captured e.g. by small-angle scattering. In a first approach, the Gaussian field is decomposed into localised waves that are allowed to fluctuate in time or to move, either ballistically or diffusively. In a second approach, a dispersion relation is used to make the spectral components of the field time-dependent. The various models lead to qualitatively different dynamics, which can be discriminated by neutron scattering. The methods of the paper are illustrated with oil/water microemulsion studied by small-angle scattering and neutron spin-echo. All available data - in both film and bulk contrasts, over the entire range of qq and τ\tau- are analyzed jointly with a single model. The analysis points to static large-scale structure of the oil and water domains, while the interfaces are subject to thermal fluctuations. The fluctuations have an amplitude around 6 nm and contribute to 30 % of the total interface area.Comment: The following article has been accepted by Journal of Chemical Physics. After it is published, it will be found at https://aip.scitation.org/journal/jcp

    Tunable viscosity modification with diluted particles: When particles decrease the viscosity of complex fluids

    Full text link
    While spherical particles are the most studied viscosity modifiers, they are well known only to increase viscosities, in particular at low concentrations. Extended studies and theories on non-spherical particles find a more complicated behavior, but still a steady increase. Involving platelets in combination with complex fluids displays an even more complex scenario that we analyze experimentally and theoretically as a function of platelet diameter, to find the underlying concepts. Using a broad toolbox of different techniques we were able to decrease the viscosity of crude oils although solid particles were added. This apparent contradiction could lead to a wider range of applications.Comment: 13+7 pages, 6+7 figure

    Influence of Ibuprofen on Phospholipid Membranes

    Get PDF
    Basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-alpha-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering (GISANS), neutron reflectometry and grazing incidence neutron spin echo spectroscopy (GINSES). From the results of these experiments we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexago- nal phase at high concentrations. Additionally, introduction of ibuprofen stiffens the membranes. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.Comment: -Improved indexing in Fig. 4e) -changed concentrations to mol% -improved arguments, however conclusions stay unchange

    Structure and Dynamics of the Central Lipid Pool and Proteins of the Bacterial Holo-Translocon

    Get PDF
    The bacterial Sec translocon, SecYEG, associates with accessory proteins YidC and the SecDF-YajC subcom-plex to form the bacterial holo-translocon (HTL). The HTL is a dynamic and flexible protein transport machine capable of coor-dinating protein secretion across the membrane and efficient lateral insertion of nascent membrane proteins. It has been hypothesized that a central lipid core facilitates the controlled passage of membrane proteins into the bilayer, ensuring the efficient formation of their native state. By performing small-angle neutron scattering on protein solubilized in ‘‘match-out’’ deuterated detergent, we have been able to interrogate a ‘‘naked’’ HTL complex, with the scattering contribution of the sur-rounding detergent micelle rendered invisible. Such an approach has allowed the confirmation of a lipid core within the HTL, which accommodates between 8 and 29 lipids. Coarse-grained molecular dynamics simulations of the HTL also demon-strate a dynamic, central pool of lipids. An opening at this lipid-rich region between YidC and the SecY lateral gate may provide an exit gateway for newly synthesized, correctly oriented, membrane protein helices, or even small bundles of helices, to emerge from the HTL

    Mutually Beneficial Combination of Molecular Dynamics Computer Simulations and Scattering Experiments

    Get PDF
    We showcase the combination of experimental neutron scattering data and molecular dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray reflectometry and small-angle scattering measurements are determined by the scattering length density profile in real space, but it is not usually possible to retrieve this profile unambiguously from the data alone. MD simulations predict these density profiles, but they require experimental control. Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the opportunities provided by this combination

    Dynamics in GISANS geometry

    No full text
    corecore