254 research outputs found

    Analysis of the low-energy electron-recoil spectrum of the CDMS experiment

    Get PDF
    We report on the analysis of the low-energy electron-recoil spectrum from the CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis provides details on the observed counting rate and possible background sources in the energy range of 2 - 8.5 keV. We find no significant excess in the counting rate above background, and compare this observation to the recent DAMA results. In the framework of a conversion of a dark matter particle into electromagnetic energy, our 90% confidence level upper limit of 0.246 events/kg/day at 3.15 keV is lower than the total rate above background observed by DAMA by 8.9σ\sigma. In absence of any specific particle physics model to provide the scaling in cross section between NaI and Ge, we assume a Z^2 scaling. With this assumption the observed rate in DAMA differs from the upper limit in CDMS by 6.8σ\sigma. Under the conservative assumption that the modulation amplitude is 6% of the total rate we obtain upper limits on the modulation amplitude a factor of ~2 less than observed by DAMA, constraining some possible interpretations of this modulation.Comment: 4 pages, 3 figure

    A Search for WIMPs with the First Five-Tower Data from CDMS

    Get PDF
    We report first results from the Cryogenic Dark Matter Search (CDMS II) experiment running with its full complement of 30 cryogenic particle detectors at the Soudan Underground Laboratory. This report is based on the analysis of data acquired between October 2006 and July 2007 from 15 Ge detectors (3.75 kg), giving an effective exposure of 121.3 kg-d (averaged over recoil energies 10--100 keV, weighted for a weakly interacting massive particle (WIMP) mass of 60 \gev). A blind analysis, incorporating improved techniques for event reconstruction and data quality monitoring, resulted in zero observed events. This analysis sets an upper limit on the WIMP-nucleon spin-independent cross section of 6.6×1044\times10^{-44} cm2^2 (4.6×1044\times10^{-44} cm2^2 when combined with previous CDMS Soudan data) at the 90% confidence level for a WIMP mass of 60 \gev. By providing the best sensitivity for dark matter WIMPs with masses above 42 GeV/c2^2, this work significantly restricts the parameter space for some of the favored supersymmetric models.Comment: 5 pages, 4 figures, submitted to PRL 28 March 200

    Characterization of SuperCDMS 1-inch Ge Detectors

    Get PDF
    The newly commissioned SuperCDMS Soudan experiment aims to search for WIMP dark matter with a sensitivity to cross sections of 5×10^(−45)cm^2 and larger (90% CL upper limit). This goal is facilitated by a new set of germanium detectors, 2.5 times more massive than the ones used in the CDMS-II experiment, and with a different athermal phonon sensor layout that eliminates radial degeneracy in position reconstruction of high radius events. We present characterization data on these detectors, as well as improved techniques for correcting position-dependent variations in pulse shape across the detector. These improvements provide surface-event discrimination sufficient for a reach of 5×10^(−45)cm^2

    Results from a Low-Energy Analysis of the CDMS II Germanium Data

    Get PDF
    We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below ~10 GeV/c^2. This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.Comment: 9 pages, 8 figures. Supplemental material included as ancillary files. v3) Added appendix with additional details regarding energy scale and background

    Search for inelastic dark matter with the CDMS II experiment

    Get PDF
    Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10-100 keV.Comment: 10 pages, 10 figures, minor changes to match published version, conclusion unchange

    CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy

    Get PDF
    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130^{130}Te. With 741 kg of TeO2_2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6×10261.6\times 10^{26} y at 1σ1\sigma (9.5×10259.5\times10^{25} y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130^{130}Te and possibly other double beta decay candidate nuclei.Comment: Submitted to the Proceedings of TAUP 2013 Conferenc

    Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    Get PDF
    Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ

    CUORE-0 results and prospects for the CUORE experiment

    Full text link
    With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.Comment: 10 pages, 3 figures, to appear in the proceedings of NEUTRINO 2014, 26th International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, held at Boston, Massachusetts, US

    Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments

    Get PDF
    CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/keV/kg/y will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10E26 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.Comment: 7 pages, 4 figures, to be published in the proceedings of ICHEP 2014, 37th International Conference on High Energy Physics, Valencia (Spain) 2-9 July 201
    corecore