2,165 research outputs found

    Panchromatic Imaging of a Transitional Disk: The Disk of GM Aur in Optical and FUV Scattered Light

    Full text link
    We have imaged GM Aur with HST, detected its disk in scattered light at 1400A and 1650A, and compared these with observations at 3300A, 5550A, 1.1 microns, and 1.6 microns. The scattered light increases at shorter wavelengths. The radial surface brightness profile at 3300A shows no evidence of the 24AU radius cavity that has been previously observed in sub-mm observations. Comparison with dust grain opacity models indicates the surface of the entire disk is populated with sub-micron grains. We have compiled an SED from 0.1 microns to 1 mm, and used it to constrain a model of the star+disk system that includes the sub-mm cavity using the Monte Carlo Radiative Transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of sub-microns grains interior to the sub-mm cavity wall. We suggest one explanation for this which could be due to a planet of mass <9 Jupiter masses interior to 24 AU. A unique cylindrical structure is detected in the FUV data from the Advanced Camera for Surveys/Solar Blind Channel. It is aligned along the system semi-minor axis, but does not resemble an accretion-driven jet. The structure is limb-brightened and extends 190 +/- 35 AU above the disk midplane. The inner radius of the limb-brightening is 40 +/- 10 AU, just beyond the sub-millimeter cavity wall.Comment: 40 pages, 11 figures, 4 tables, accepted to Ap

    Long-Term Clinical Impact of Coronary CT Angiography in Patients With Recent Acute-Onset Chest Pain The Randomized Controlled CATCH Trial

    Get PDF
    AbstractObjectivesThe aim of the CATCH (CArdiac cT in the treatment of acute CHest pain) trial was to investigate the long-term clinical impact of a coronary computed tomographic angiography (CTA)-guided treatment strategy in patients with recent acute-onset chest pain compared to standard care.BackgroundThe prognostic implications of a coronary CTA-guided treatment strategy have not been compared in a randomized fashion to standard care in patients referred for acute-onset chest pain.MethodsPatients with acute chest pain but normal electrocardiograms and troponin values were randomized to treatment guided by either coronary CTA or standard care (bicycle exercise electrocardiogram or myocardial perfusion imaging). In the coronary CTA-guided group, a functional test was included in cases of nondiagnostic coronary CTA images or coronary stenoses of borderline severity. The primary endpoint was a composite of cardiac death, myocardial infarction (MI), hospitalization for unstable angina pectoris (UAP), late symptom-driven revascularizations, and readmission for chest pain.ResultsWe randomized 299 patients to coronary CTA-guided strategy and 301 to standard care. After inclusion, 24 patients withdrew their consent. The median (interquartile range) follow-up duration was 18.7 (range 16.8 to 20.1) months. In the coronary CTA-guided group, 30 patients (11%) had a primary endpoint versus 47 patients (16%) in the standard care group (p = 0.04; hazard ratio [HR]: 0.62 [95% confidence interval: 0.40 to 0.98]). A major adverse cardiac event (cardiac death, MI, hospitalization for UAP, and late symptom-driven revascularization) was observed in 5 patients (2 MIs, 3 UAPs) in the coronary CTA-guided group versus 14 patients (1 cardiac death, 7 MIs, 5 UAPs, 1 late symptom-driven revascularization) in the standard care group (p = 0.04; HR: 0.36 [95% CI: 0.16 to 0.95]). Differences in cardiac death and MI (8 vs. 2) were insignificant (p = 0.06).ConclusionsA coronary CTA-guided treatment strategy appears to improve clinical outcome in patients with recent acute-onset chest pain and normal electrocardiograms and troponin values compared to standard care with a functional test. (Cardiac-CT in the Treatment of Acute Chest Pain [CATCH]; NCT01534000

    A large X-ray flare from the Herbig Ae star V892 Tau

    Get PDF
    We report the XMM-Newton observation of a large X-ray flare from the Herbig Ae star V892 Tau. The apparent low mass companion of V892 Tau, V892 Tau NE, is unresolved by XMM-Newton. Nevertheless there is compelling evidence from combined XMM-Newton and Chandra data that the origin of the flare is the Herbig Ae star V892 Tau. During the flare the X-ray luminosity of V892 Tau increases by a factor of ~15, while the temperature of the plasma increases from kT ~ 1.5 keV to kT ~ 8 keV. From the scaling of the flare event, based on hydrodynamic modeling, we conclude that a 500 G magnetic field is needed in order to confine the plasma. Under the assumptions that a dynamo mechanism is required to generate such a confining magnetic field and that surface convection is a necessary ingredient for a dynamo, our findings provide indirect evidence for the existence of a significant convection zone in the stellar envelope of Herbig Ae stars.Comment: accepted for publication in A&A (12 pages - 6 figures

    an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT

    Get PDF
    © Copyright owned by the author(s). MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities

    Exploring the Partonic Structure of Hadrons through the Drell-Yan Process

    Full text link
    The Drell-Yan process is a standard tool for probing the partonic structure of hadrons. Since the process proceeds through a quark-antiquark annihilation, Drell-Yan scattering possesses a unique ability to selectively probe sea distributions. This review examines the application of Drell-Yan scattering to elucidating the flavor asymmetry of the nucleon's sea and nuclear modifications to the sea quark distributions in unpolarized scattering. Polarized beams and targets add an exciting new dimension to Drell-Yan scattering. In particular, the two initial-state hadrons give Drell-Yan sensitivity to chirally-odd transversity distributions.Comment: 23 pages, 9 figures, to appear in J. Phys. G, resubmission corrects typographical error

    Variable selection: current practice in epidemiological studies

    Get PDF
    Selection of covariates is among the most controversial and difficult tasks in epidemiologic analysis. Correct variable selection addresses the problem of confounding in etiologic research and allows unbiased estimation of probabilities in prognostic studies. The aim of this commentary is to assess how often different variable selection techniques were applied in contemporary epidemiologic analysis. It was of particular interest to see whether modern methods such as shrinkage or penalized regression were used in recent publications. Stepwise selection methods remained the predominant method for variable selection in publications in epidemiological journals in 2008. Shrinkage methods were not used in any of the reviewed articles. Editors, reviewers and authors have insufficiently promoted the new, less controversial approaches of variable selection in the biomedical literature, whereas statisticians may not have adequately addressed the method’s feasibility

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    corecore