40 research outputs found

    Sense of coherence, mental well-being and perceived preoperative hospital and surgery related stress in surgical patients with malignant, benign, and no neoplasms

    Get PDF
    Background: This prospective, cross-sectional, observational study examined associations between sense of coherence (SOC), mental well-being, and perceived preoperative hospital and surgery related stress of surgical patients with malignant, benign, and no neoplasms. The objective was to assess a putative association between SOC and preoperative stress, and to test for a statistical mediation by mental well-being. Method: The sample consisted of 4918 patients from diverse surgical fields, of which 945 had malignant neoplasms, 333 benign neoplasms, and 3640 no neoplasms. For each subsample, we conducted simple mediation analyses to test an indirect effect of SOC on preoperative stress mediated by mental well-being. The models were adjusted for age, gender, and essential medical factors. Results: Patient groups did not differ significantly regarding degrees of SOC and mental well-being (SOC, M [SD]: 12.31 [2.59], 12.02 [2.62], 12.18 [2.57]; mental well-being M [SD]: 59.26 [24.05], 56.89 [22.67], 57.31 [22.87], in patients with malignant, benign, and without neoplasms, respectively). Patients without neoplasms reported significantly lower stress (4.19 [2.86], M [SD]) than those with benign (5.02 [3.03], M [SD]) and malignant neoplasms (4.99 [2.93], M [SD]). In all three mediation models, SOC had significant direct effects on stress, with higher SOC being associated with lower stress (- 0.3170 [0.0407], - 0.3484 [0.0752], - 0.2919 [0.0206]; c' [SE], p < 0.001 in patients with malignant, benign, and without neoplasms, respectively). In patients with malignant neoplasms and without neoplasms, SOC showed small indirect effects on stress that were statistically mediated by well-being. Higher SOC was related to higher well-being, which in turn was related to lower stress. In patients with benign neoplasms, however, no significant indirect effects of SOC were found. Conclusions: SOC was directly associated with lower perceived hospital and surgery related stress, over and above the direct and mediation effects of mental well-being. Because the data are cross-sectional, conclusions implying causality cannot be drawn. Nevertheless, they indicate important relationships that can inform treatment approaches to reduce elevated preoperative stress by specifically addressing low SOC

    Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b

    Get PDF
    Hot gas giant exoplanets can lose part of their atmosphere due to strong stellar irradiation, affecting their physical and chemical evolution. Studies of atmospheric escape from exoplanets have mostly relied on space-based observations of the hydrogen Lyman-{\alpha} line in the far ultraviolet which is strongly affected by interstellar absorption. Using ground-based high-resolution spectroscopy we detect excess absorption in the helium triplet at 1083 nm during the transit of the Saturn-mass exoplanet WASP-69b, at a signal-to-noise ratio of 18. We measure line blue shifts of several km/s and post transit absorption, which we interpret as the escape of part of the atmosphere trailing behind the planet in comet-like form. [Additional notes by authors: Furthermore, we provide upper limits for helium signals in the atmospheres of the exoplanets HD 209458b, KELT-9b, and GJ 436b. We investigate the host stars of all planets with detected helium signals and those of the three planets we derive upper limits for. In each case we calculate the X-ray and extreme ultraviolet flux received by these planets. We find that helium is detected in the atmospheres of planets (orbiting the more active stars and) receiving the larger amount of irradiation from their host stars.]Comment: Submitted to Science on 14 March 2018; Accepted by Science on 16 November 2018; Published by Science on 6 December 2018. This is the author's version of the work. It is posted here by permission of the AAAS for personal use. The definitive version was published in Science, on 6 December 2018 - Report: pages 21 (preprint), 4 figures - Supplementary materials: 22 pages, 10 figures, 3 table

    3D-conformal-intensity modulated radiotherapy with compensators for head and neck cancer: clinical results of normal tissue sparing

    Get PDF
    BACKGROUND: To investigate the potential of parotic gland sparing of intensity modulated radiotherapy (3D-c-IMRT) performed with metallic compensators for head and neck cancer in a clinical series by analysis of dose distributions and clinical measures. MATERIALS AND METHODS: 39 patients with squamous cell cancer of the head and neck irradiated using 3D-c-IMRT were evaluable for dose distribution within PTVs and at one parotid gland and 38 patients for toxicity analysis. 10 patients were treated primarily, 29 postoperatively, 19 received concomittant cis-platin based chemotherapy, 20 3D-c-IMRT alone. Initially the dose distribution was calculated with Helax (® )and photon fluence was modulated using metallic compensators made of tin-granulate (n = 22). Later the dose distribution was calculated with KonRad (® )and fluence was modified by MCP 96 alloy compensators (n = 17). Gross tumor/tumor bed (PTV 1) was irradiated up to 60–70 Gy, [5 fractions/week, single fraction dose: 2.0–2.2 (simultaneously integrated boost)], adjuvantly irradiated bilateral cervical lymph nodes (PTV 2) with 48–54 Gy [single dose: 1.5–1.8]). Toxicity was scored according the RTOG scale and patient-reported xerostomia questionnaire (XQ). RESULTS: Mean of the median doses at the parotid glands to be spared was 25.9 (16.3–46.8) Gy, for tin graulate 26 Gy, for MCP alloy 24.2 Gy. Tin-granulate compensators resulted in a median parotid dose above 26 Gy in 10/22, MCP 96 alloy in 0/17 patients. Following acute toxicities were seen (°0–2/3): xerostomia: 87%/13%, dysphagia: 84%/16%, mucositis: 89%/11%, dermatitis: 100%/0%. No grade 4 reaction was encountered. During therapy the XQ forms showed °0–2/3): 88%/12%. 6 months postRT chronic xerostomia °0–2/3 was observed in 85%/15% of patients, none with °4 xerostomia. CONCLUSION: 3D-c-IMRT using metallic compensators along with inverse calculation algorithm achieves sufficient parotid gland sparing in virtually all advanced head and neck cancers. Since the concept of lower single (and total) doses in the adjuvantly treated volumes reduces acute morbidity 3D-c-IMRT nicely meets demands of concurrent chemotherapy protocols

    Detection of He I λ10830\lambda10830 \AA{} absorption on HD 189733 b with CARMENES high-resolution transmission spectroscopy

    Get PDF
    We present three transit observations of HD 189733 b obtained with the high-resolution spectrograph CARMENES at Calar Alto. A strong absorption signal is detected in the near-infrared He I triplet at 10830 \AA{} in all three transits. During mid-transit, the mean absorption level is 0.88±0.040.88\pm0.04 % measured in a ±\pm10 km s1^{-1} range at a net blueshift of 3.5±0.4-3.5\pm0.4 km s1^{-1} (10829.84--10830.57 \AA{}). The absorption signal exhibits radial velocities of +6.5±3.1+6.5\pm3.1 km s1^{-1} and 12.6±1.0-12.6\pm1.0 km s1^{-1} during ingress and egress, respectively; measured in the planetary rest frame. We show that stellar activity related pseudo-signals interfere with the planetary atmospheric absorption signal. They could contribute as much as 80% of the observed signal and might also affect the radial velocity signature, but pseudo-signals are very unlikely to explain the entire signal. The observed line ratio between the two unresolved and the third line of the He I triplet is 2.8±0.22.8\pm0.2, which strongly deviates from the value expected for an optically thin atmospheres. When interpreted in terms of absorption in the planetary atmosphere, this favors a compact helium atmosphere with an extent of only 0.2 planetary radii and a substantial column density on the order of 4×10124\times 10^{12} cm2^{-2}. The observed radial velocities can be understood either in terms of atmospheric circulation with equatorial superrotation or as a sign of an asymmetric atmospheric component of evaporating material. We detect no clear signature of ongoing evaporation, like pre- or post-transit absorption, which could indicate material beyond the planetary Roche lobe, or radial velocities in excess of the escape velocity. These findings do not contradict planetary evaporation, but only show that the detected helium absorption in HD 189733 b does not trace the atmospheric layers that show pronounced escape signatures.Comment: 13 pages, 12 figures, accepted for publication in A&

    Rotational IMRT techniques compared to fixed gantry IMRT and Tomotherapy: multi-institutional planning study for head-and-neck cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments enable to deliver rotational IMRT with standard C-arm gantry based linear accelerators. This upcoming treatment technique was benchmarked in a multi-center treatment planning study against static gantry IMRT and rotational IMRT based on a ring gantry for a complex parotid gland sparing head-and-neck technique.</p> <p>Methods</p> <p>Treatment plans were created for 10 patients with head-and-neck tumours (oropharynx, hypopharynx, larynx) using the following treatment planning systems (TPS) for rotational IMRT: Monaco (ELEKTA VMAT solution), Eclipse (Varian RapidArc solution) and HiArt for the helical tomotherapy (Tomotherapy). Planning of static gantry IMRT was performed with KonRad, Pinnacle and Panther DAO based on step&shoot IMRT delivery and Eclipse for sliding window IMRT. The prescribed doses for the high dose PTVs were 65.1Gy or 60.9Gy and for the low dose PTVs 55.8Gy or 52.5Gy dependend on resection status. Plan evaluation was based on target coverage, conformity and homogeneity, DVHs of OARs and the volume of normal tissue receiving more than 5Gy (V<sub>5Gy</sub>). Additionally, the cumulative monitor units (MUs) and treatment times of the different technologies were compared. All evaluation parameters were averaged over all 10 patients for each technique and planning modality.</p> <p>Results</p> <p>Depending on IMRT technique and TPS, the mean CI values of all patients ranged from 1.17 to 2.82; and mean HI values varied from 0.05 to 0.10. The mean values of the median doses of the spared parotid were 26.5Gy for RapidArc and 23Gy for VMAT, 14.1Gy for Tomo. For fixed gantry techniques 21Gy was achieved for step&shoot+KonRad, 17.0Gy for step&shoot+Panther DAO, 23.3Gy for step&shoot+Pinnacle and 18.6Gy for sliding window.</p> <p>V<sub>5Gy </sub>values were lowest for the sliding window IMRT technique (3499 ccm) and largest for RapidArc (5480 ccm). The lowest mean MU value of 408 was achieved by Panther DAO, compared to 1140 for sliding window IMRT.</p> <p>Conclusions</p> <p>All IMRT delivery technologies with their associated TPS provide plans with satisfying target coverage while at the same time respecting the defined OAR criteria. Sliding window IMRT, RapidArc and Tomo techniques resulted in better target dose homogeneity compared to VMAT and step&shoot IMRT. Rotational IMRT based on C-arm linacs and Tomotherapy seem to be advantageous with respect to OAR sparing and treatment delivery efficiency, at the cost of higher dose delivered to normal tissues. The overall treatment plan quality using Tomo seems to be better than the other TPS technology combinations.</p

    Water vapor detection in the transmission spectra of HD 209458 b with the CARMENES NIR channel

    Get PDF
    Aims: We aim at detecting H2_2O in the atmosphere of the hot Jupiter HD 209458 b and perform a multi-band study in the near infrared with CARMENES. Methods: The H2_2O absorption lines from the planet's atmosphere are Doppler-shifted due to the large change in its radial velocity during transit. This shift is of the order of tens of km s1^{-1}, whilst the Earth's telluric and the stellar lines can be considered quasi-static. We took advantage of this to remove the telluric and stellar lines using SYSREM, a principal component analysis algorithm. The residual spectra contain the signal from thousands of planetary molecular lines well below the noise level. We retrieve this information by cross-correlating the spectra with models of the atmospheric absorption. Results: We find evidence of H2_2O in HD 209458 b with a signal-to-noise ratio (S/N) of 6.4. The signal is blueshifted by --5.2 1.3+2.6^{+2.6}_{-1.3} km s1^{-1}, which, despite the error bars, is a firm indication of day-to-night winds at the terminator of this hot Jupiter. Additionally, we performed a multi-band study for the detection of H2_2O individually from the three NIR bands covered by CARMENES. We detect H2_2O from its 1.0 μ\mum band with a S/N of 5.8, and also find hints from the 1.15 μ\mum band, with a low S/N of 2.8. No clear planetary signal is found from the 1.4 μ\mum band. Conclusions: Our significant signal from the 1.0 μ\mum band in HD 209458 b represents the first detection of H2_2O from this band, the bluest one to date. The unfavorable observational conditions might be the reason for the inconclusive detection from the stronger 1.15 and 1.4 μ\mum bands. H2_2O is detected from the 1.0 μ\mum band in HD 209458 b, but hardly in HD 189733 b, which supports a stronger aerosol extinction in the latter.Comment: 11 pages, 10 figures; accepted for publication in A&

    A giant exoplanet orbiting a very-low-mass star challenges planet formation models

    Get PDF
    Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought

    CARMENES: high-resolution spectra and precise radial velocities in the red and infrared

    Get PDF
    SPIE Astronomical Telescopes + Instrumentation (2018, Austin, Texas, United States

    Patient-related QA for helical TomoTherapy with Delta4: analysis of the results

    No full text
    The biplanar diode arrays Delta4PT and Delta4+ has been used in our hospital since the introduction of the TomoTherapy in 2013 to ensure a good agreement between the calculated and the measured dose distributions in patient-related QA with helical TomoTherapy. The aim of this presentation is to evaluate the quality of the measurement procedure with the Delta4 phantoms Delta4PT and (since January 2016) Delta4+. This includes the influence of a cross calibration with a treatment plan with low modulation
    corecore