3,539 research outputs found

    Assessing acute itch intensity : general labelled magnitude scale is more reliable than classic visual analogue scale

    Get PDF
    The reliable measurement of itch intensity is crucial, both in research as well as clinical contexts. For example, when the reliability of a measurement scale is unknown, it is impossible to determine whether a patient has changed sufficiently to be confident that the change is beyond that which could be attributed to measurement error (1). One factor that might influence the reliability of measurements is the type of rating scale used to assess itch intensity. Previous research (2-4) has documented the retest reliability of different rating scales for assessing chronic itch intensity. However, a retest reliability analysis of rating scales for acute experimental itch, induced using substances such as histamine or cowhage, is currently lacking. Here, we compare the test-retest reliability of three rating scales commonly used for this purpose. First, we considered the visual analogue scale in its classic form (cVAS), where participants indicate itch intensity on a line ranging from 0 (no itch) to 100 (the most intense itch imaginable). Second, we included a variant of the VAS, where an additional ‘Scratch Threshold’ marker is set at 33% (tVAS,5), defined as itching strong enough to be scratched (6). Finally, we considered the general Labelled Magnitude Scale (gLMS,7), where participants judge the magnitude of itch on a line with quasilogarithmically placed labels of “no sensation” at 0, “barely detectable” at 1, “weak” at 6, “moderate” at 17, “strong” at 35, “very strong” at 53 and “strongest imaginable sensation” at 100. Thus, all three scales have an identical range, but differ in the type and number of verbal labels provided

    Die be-tekening van konsepte in die opvoedkunde met verwysing na standpuntverskille aangaande die skool en ouerhuis as gesagstrukture

    Get PDF
    In this article attention is focused upon the diversity of meanings that educationists attach to a societal relationship like the school. The opinion often appearing in literature on education that the school is an "extension" of the family and that the teacher can take action as a substitute parent is questioned in particular. By means of a cosmological analysis of the societal structures, school and family, an attempt is made to refute such statements. This variety of meanings which tend to cause confusion and are conveyed by the mentioned concepts in literature, is ascribed to the outcome of a diversity of paradigmatic and theoretical presuppositions

    Die be-tekening van konsepte in die opvoedkunde met verwysing na opvoeding as ‘vorming’ en die kind as ‘wordende mens’

    Get PDF
    In this article the opinion of many educationists that education is to be regarded as a formative process’by which the child can be ‘shaped’ or 'moulded’ in an unrestricted and dominative fashion is highlighted. As an alternative, the concept of the 'normative disclosure’ of the personality structure of the child is suggested as it brings the true meaning of education to the fore. The variety of meanings conveyed by the mentioned concepts, which tend to cause confusion, is ascribed to the outcome of a diversity of paradigmatic and theoretical presuppositions as well as to the outcome of disparity regarding the cosmological, anthropological and epistemological basis of education that has given rise to divergent interpretations of concepts in different schools of philosophy and even among individuals in the same school of thought

    Around traces and quasitraces

    Full text link
    This paper presents a survey of results on traces and quasitraces on C∗^*-algebras, and it provides some new results on traces on ultrapowers and on the existence of faithful traces. As for the former, we exhibit a sequence of traceless simple, separable, unital, nuclear C∗^*-algebras whose ultrapower does admit a quasitrace (and likely also a trace). We characterize in different ways C∗^*-algebras that admit a faithful trace, respectively, where each quotient of the C∗^*-algebra admits a faithful trace.Comment: 21 page

    Probing the radial temperature structure of protoplanetary disks with Herschel/HIFI

    Full text link
    Herschel/HIFI spectroscopic observations of CO J=10-9, CO J=16-15 and [CII] towards HD 100546 are presented. The objective is to resolve the velocity profile of the lines to address the emitting region of the transitions and directly probe the distribution of warm gas in the disk. The spectra reveal double-peaked CO line profiles centered on the systemic velocity, consistent with a disk origin. The J=16-15 line profile is broader than that of the J=10-9 line, which in turn is broader than those of lower J transitions (6-5, 3-2, observed with APEX), thus showing a clear temperature gradient of the gas with radius. A power-law flat disk model is used to fit the CO line profiles and the CO rotational ladder simultaneously, yielding a temperature of T_0=1100 \pm 350 K (at r_0 = 13 AU) and an index of q=0.85 \pm 0.1 for the temperature radial gradient. This indicates that the gas has a steeper radial temperature gradient than the dust (mean q_{dust} ~ 0.5), providing further proof of the thermal decoupling of gas and dust at the disk heights where the CO lines form. The [CII] line profile shows a strong single-peaked profile red-shifted by 0.5 km s-1 compared to the systemic velocity. We conclude that the bulk of the [CII] emission has a non-disk origin (e.g., remnant envelope or diffuse cloud).Comment: Accepted for publication in ApJ

    Resolving HD 100546 disc in the mid-infrared: Small inner disc and asymmetry near the gap

    Get PDF
    A region of roughly half of the solar system scale around the star HD 100546 is largely cleared of gas and dust, in contrast to the bright outer disc. However, some material is observed in the immediate vicinity of the star. We investigate how the dust is distributed within and outside the gap, and constrain the disc geometry with mid-infrared interferometric observations using VLTI/MIDI. With baseline lengths of 40m, our long baseline observations are sensitive to the inner few AU from the star, and we combined them with observations at shorter, 15m baselines, to probe emission beyond the gap at up to 20AU from the star. We modelled the mid-infrared emission using radial temperature profiles. Our model is composed of infinitesimal concentric annuli emitting as black bodies, and it has distinct inner and outer disc components. We derived an upper limit of 0.7AU for the radial size of the inner disc, from our longest baseline data. This small dusty disc is separated from the edge of the outer disc by a large, roughly 10AU wide gap. Our short baseline data place a bright ring of emission at 11+-1AU, consistent with prior observations of the transition region between the gap and the outer disc, known as the disc wall. The inclination and position angle are constrained by our data to i=53+-8deg and PA=145+-5deg. Compared to the rim and outer disc geometry this suggests co-planarity. Brightness asymmetry is evident in both short and long baseline data, and it is unequivocally discernible from any atmospheric or instrumental effects. The origin of the asymmetry is consistent with the bright disc wall, which we find to be 1-2AU wide. The gap is cleared of micron-sized dust, but we cannot rule out the presence of larger particles and/or perturbing bodies.Comment: 12 pages, 9 figures, accepted for publication in A&

    Kinematic and Thermal Structure at the onset of high-mass star formation

    Get PDF
    We want to understand the kinematic and thermal properties of young massive gas clumps prior to and at the earliest evolutionary stages of high-mass star formation. Do we find signatures of gravitational collapse? Do we find temperature gradients in the vicinity or absence of infrared emission sources? Do we find coherent velocity structures toward the center of the dense and cold gas clumps? To determine kinematics and gas temperatures, we used ammonia, because it is known to be a good tracer and thermometer of dense gas. We observed the NH3_3(1,1) and (2,2) lines within seven very young high-mass star-forming regions with the VLA and the Effelsberg 100m telescope. This allows us to study velocity structures, linewidths, and gas temperatures at high spatial resolution of 3-5"", corresponding to ∌\sim0.05 pc. We find on average cold gas clumps with temperatures in the range between 10 K and 30 K. The observations do not reveal a clear correlation between infrared emission peaks and ammonia temperature peaks. We report an upper limit for the linewidth of ∌\sim1.3 km s−1^{-1}, at the spectral resolution limit of our VLA observation. This indicates a relatively low level of turbulence on the scale of the observations. Velocity gradients are present in almost all regions with typical velocity differences of 1 to 2 km s−1^{-1} and gradients of 5 to 10 km s−1^{-1} pc−1^{-1}. These velocity gradients are smooth in most cases, but there is one exceptional source (ISOSS23053), for which we find several velocity components with a steep velocity gradient toward the clump centers that is larger than 30 km s−1^{-1} pc−1^{-1}. This steep velocity gradient is consistent with recent models of cloud collapse. Furthermore, we report a spatial correlation of ammonia and cold dust, but we also find decreasing ammonia emission close to infrared emission sources.Comment: 20 pages, 10 figure

    The structured environments of embedded star-forming cores. PACS and SPIRE mapping of the enigmatic outflow source UYSO 1

    Full text link
    The intermediate-mass star-forming core UYSO 1 has previously been found to exhibit intriguing features. While deeply embedded and previously only identified by means of its (sub-)millimeter emission, it drives two powerful, dynamically young, molecular outflows. Although the process of star formation has obviously started, the chemical composition is still pristine. We present Herschel PACS and SPIRE continuum data of this presumably very young region. The now complete coverage of the spectral energy peak allows us to precisely constrain the elevated temperature of 26 - 28 K for the main bulge of gas associated with UYSO1, which is located at the interface between the hot HII region Sh 2-297 and the cold dark nebula LDN 1657A. Furthermore, the data identify cooler compact far-infrared sources of just a few solar masses, hidden in this neighbouring dark cloud.Comment: accepted contribution for the forthcoming Herschel Special Issue of A&A, 5 pages (will appear as 4-page letter in the journal), 6 figure file
    • 

    corecore