4,544 research outputs found

    Dynamical phase diagram of Gaussian BEC wave packets in optical lattices

    Full text link
    We study the dynamics of self-trapping in Bose-Einstein condensates (BECs) loaded in deep optical lattices with Gaussian initial conditions, when the dynamics is well described by the Discrete Nonlinear Schr\"odinger Equation (DNLS). In the literature an approximate dynamical phase diagram based on a variational approach was introduced to distinguish different dynamical regimes: diffusion, self-trapping and moving breathers. However, we find that the actual DNLS dynamics shows a completely different diagram than the variational prediction. We numerically calculate a detailed dynamical phase diagram accurately describing the different dynamical regimes. It exhibits a complex structure which can readily be tested in current experiments in BECs in optical lattices and in optical waveguide arrays. Moreover, we derive an explicit theoretical estimate for the transition to self-trapping in excellent agreement with our numerical findings, which may be a valuable guide as well for future studies on a quantum dynamical phase diagram based on the Bose-Hubbard Hamiltonian

    Convergence Rates of Gaussian ODE Filters

    Get PDF
    A recently-introduced class of probabilistic (uncertainty-aware) solvers for ordinary differential equations (ODEs) applies Gaussian (Kalman) filtering to initial value problems. These methods model the true solution xx and its first qq derivatives \emph{a priori} as a Gauss--Markov process X\boldsymbol{X}, which is then iteratively conditioned on information about x˙\dot{x}. This article establishes worst-case local convergence rates of order q+1q+1 for a wide range of versions of this Gaussian ODE filter, as well as global convergence rates of order qq in the case of q=1q=1 and an integrated Brownian motion prior, and analyses how inaccurate information on x˙\dot{x} coming from approximate evaluations of ff affects these rates. Moreover, we show that, in the globally convergent case, the posterior credible intervals are well calibrated in the sense that they globally contract at the same rate as the truncation error. We illustrate these theoretical results by numerical experiments which might indicate their generalizability to q∈{2,3,
 }q \in \{2,3,\dots\}.Comment: 26 pages, 5 figure

    Questioning the existence of a unique ground state structure for Si clusters

    Full text link
    Density functional and quantum Monte Carlo calculations challenge the existence of a unique ground state structure for certain Si clusters. For Si clusters with more than a dozen atoms the lowest ten isomers are close in energy and for some clusters entropic effects can change the energetic ordering of the configurations. Isotope pure configurations with rotational symmetry and symmetric configurations containing one additional isotope are disfavored by these effects. Comparisons with experiment are thus difficult since a mixture of configurations is to be expected at thermal equilibrium

    Fractal Conductance Fluctuations of Classical Origin

    Full text link
    In mesoscopic systems conductance fluctuations are a sensitive probe of electron dynamics and chaotic phenomena. We show that the conductance of a purely classical chaotic system with either fully chaotic or mixed phase space generically exhibits fractal conductance fluctuations unrelated to quantum interference. This might explain the unexpected dependence of the fractal dimension of the conductance curves on the (quantum) phase breaking length observed in experiments on semiconductor quantum dots.Comment: 5 pages, 4 figures, to appear in PR

    Self-organized escape of oscillator chains in nonlinear potentials

    Full text link
    We present the noise free escape of a chain of linearly interacting units from a metastable state over a cubic on-site potential barrier. The underlying dynamics is conservative and purely deterministic. The mutual interplay between nonlinearity and harmonic interactions causes an initially uniform lattice state to become unstable, leading to an energy redistribution with strong localization. As a result a spontaneously emerging localized mode grows into a critical nucleus. By surpassing this transition state, the nonlinear chain manages a self-organized, deterministic barrier crossing. Most strikingly, these noise-free, collective nonlinear escape events proceed generally by far faster than transitions assisted by thermal noise when the ratio between the average energy supplied per unit in the chain and the potential barrier energy assumes small values
    • 

    corecore