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Abstract
A recently introduced class of probabilistic (uncertainty-aware) solvers for ordinary differential equations (ODEs) applies
Gaussian (Kalman) filtering to initial value problems. These methods model the true solution x and its first q derivatives a
priori as a Gauss–Markov process X , which is then iteratively conditioned on information about ẋ . This article establishes
worst-case local convergence rates of order q + 1 for a wide range of versions of this Gaussian ODE filter, as well as global
convergence rates of order q in the case of q = 1 and an integrated Brownian motion prior, and analyses how inaccurate
information on ẋ coming from approximate evaluations of f affects these rates. Moreover, we show that, in the globally
convergent case, the posterior credible intervals are well calibrated in the sense that they globally contract at the same rate as
the truncation error.We illustrate these theoretical results by numerical experiments whichmight indicate their generalizability
to q ∈ {2, 3, . . .}.

Keywords Probabilistic numerics · Ordinary differential equations · Initial value problems · Numerical analysis · Gaussian
processes · Markov processes

Mathematics Subject Classification 65L20 · 37H10 · 68W20 · 93E11

1 Introduction

A solver of an initial value problem (IVP) outputs an approx-
imate solution x̂ : [0, T ] → R

d of an ordinary differential
equation (ODE) with initial condition:

x (1)(t) := dx

dt
(t) = f (x(t)) , ∀t ∈ [0, T ],

x(0) = x0 ∈ R
d . (1)

(Without loss of generality, we simplify the presentation by
restricting attention to the autonomous case.) The numerical
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solution x̂ is computed by iteratively collecting information
on x (1)(t) by evaluating f : R

d → R
d at a numerical esti-

mate x̂(t) of x(t) and using these approximate evaluations of
the time derivative to extrapolate along the time axis. In other
words, the numerical solution (or estimator) x̂ of the exact
solution (or estimand) x is calculated based on evaluations
of the vector field f (or data). Accordingly, we treat x̂ itself
as an estimator, i.e., a statistic that translates evaluations of f
into a probability distribution over C1([0, T ]; R

d), the space
of continuously differentiable functions from [0, T ] to R

d .
This probabilistic interpretation of numerical computa-

tions of tractable from intractable quantities as statistical
inference of latent from observable quantities applies to all
numerical problems and has been repeatedly recommended
in the past (Poincaré 1896; Diaconis 1988; Skilling 1991;
O’Hagan 1992; Ritter 2000). It employs the language of
probability theory to account for the epistemic uncertainty
(i.e., limited knowledge) about the accuracy of interme-
diate and final numerical computations, thereby yielding
algorithms which can be more aware of—as well as more
robust against—uncertainty over intermediate computational
results. Such algorithms can output probability measures,
instead of point estimates, over the final quantity of inter-
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est. This approach, now called probabilistic numerics (PN)
(Hennig et al. 2015; Oates and Sullivan 2019), has in
recent years been spelled out for a wide range of numeri-
cal tasks, including linear algebra, optimization, integration,
and differential equations, therebyworking towards the long-
term goal of a coherent framework to propagate uncertainty
through chained computations, as desirable, e.g., in statistical
machine learning.

In this paper, we determine the convergence rates of a
recent family of PN methods (Schober et al. 2014; Kersting
and Hennig 2016; Magnani et al. 2017; Schober et al. 2019;
Tronarp et al. 2019) which recast an IVP as a stochastic
filtering problem (Øksendal 2003, Chapter 6), an approach
that has been studied in other settings (Jazwinski 1970), but
has not been applied to IVPs before. These methods assume
a priori that the solution x and its first q ∈ N derivatives
follow a Gauss–Markov process X that solves a stochastic
differential equation (SDE).

The evaluations of f at numerical estimates of the true
solution can then be regarded as imperfect evaluations of
ẋ , which can then be used for a Bayesian update of X .
Such recursive updates along the time axis yield an algo-
rithm whose structure resembles that of Gaussian (Kalman)
filtering (Särkkä 2013, Chapter 4). These methods add only
slight computational overhead compared to classical meth-
ods (Schober et al. 2019) and have been shown to inherit
local convergence rates from equivalent classical methods
in specific cases (Schober et al. 2014; Schober et al. 2019).
These equivalences (i.e., the equality of the filtering poste-
rior mean and the classical method) are only known to hold
in the case of the integrated Brownian motion (IBM) prior
and noiseless evaluations of f (in terms of our later notation,
the case R ≡ 0), as well as under the following restrictions:

Firstly, for q ∈ {1, 2, 3}, and if the first step is divided
into sub-steps resembling those of Runge–Kutta methods,
an equivalence of the posterior mean of the first step of the
filter and the explicit Runge–Kutta method of order q was
established in Schober et al. (2014) (but for q ∈ {2, 3} only
in the limit as the initial time of the IBM tends to −∞). Sec-
ondly, it was shown by Schober et al. (2019) that, for q = 1,
the posterior mean after each step coincides with the trape-
zoidal rule if it takes an additional evaluation of f at the end
of each step, known as P(EC)1. The same paper shows that,
for q = 2, the filter coincides with a third-order Nordsieck
method (Nordsieck 1962) if the filter is in the steady state,
i.e., after the sequence of error covariance matrices has con-
verged. These results neither cover filters with the integrated
Ornstein–Uhlenbeck process (IOUP) prior (Magnani et al.
2017) nor nonzero noise models on evaluations of f .

In this paper, we directly prove convergence rates with-
out first fitting the filter to existing methods, and thereby
lift many of the above restrictions on the convergence rates.
While the more-recent work by Tronarp et al. (2020) also

provide convergence rates of estimators of x in the Bayesian
ODE filtering/smoothing paradigm, they concern the max-
imum a posteriori estimator (as computed by the iterated
extended Kalman ODE smoother), and therefore differ from
our convergence rates of the filtering mean (as computed by
the Kalman ODE filter).

1.1 Contribution

Our main results—Theorems 8 and 14—provide local and
global convergence rates of the ODE filter when the step size
h goes to zero. Theorem 8 shows local convergence rates of
hq+1 without the above-mentioned previous restrictions—
i.e., for a generic Gaussian ODE filter for all q ∈ N, both
IBM and IOUP prior, flexible Gaussian initialization (see
Assumptions 2 and 3), and arbitrary evaluation noise R ≥ 0.
As a first global convergence result, Theorem 14 establishes
global convergence rates of hq in the case of q = 1, the
IBM prior and all fixed measurement uncertainty models R
of order p ∈ [1,∞] (see Assumption 4). This global rate
of the worst-case error is matched by the contraction rate
of the posterior credible intervals, as we show in Theorem
15. Moreover, we also give closed-form expressions for the
steady states in the global case and illustrate our results as
well as their possible generalizability to q ≥ 2 by experi-
ments in Sect. 9.

1.2 Related work on probabilistic ODE solvers

TheGaussianODEfilter can be thought of as a self-consistent
Bayesian decision agent that iteratively updates its prior
belief X over x : [0, T ] → R

d (and its first q derivatives)
with information on ẋ from evaluating f .1 For Gauss–
Markov priors, it performs exact Bayesian inference and
optimally (with respect to the L2-loss) extrapolates along the
time axis.Accordingly, all of its computations are determinis-
tic and—due to its restriction toGaussian distributions—only
slightly more expensive than classical solvers. Experiments
demonstrating competitive performance with classical meth-
ods are provided in Schober et al. (2019, Section 5).

Another line of work (comprising the methods from
Chkrebtii et al. (2016); Conrad et al. (2017); Teymur et al.
(2016); Lie et al. (2019);Abdulle andGaregnani (2020); Tey-
mur et al. (2018)) introduces probability measures to ODE
solvers in a fundamentally different way—by representing

1 Here, the word ‘Bayesian’ describes the algorithm in the sense that
it employs a prior over the quantity of interest and updates it by Bayes
rule according to a prespecified measurement model (as also used in
Skilling (1991); Chkrebtii et al. (2016); Kersting and Hennig (2016)).
The ODE filter is not Bayesian in the stronger sense of Cockayne et al.
(2019), and it remains an open problem to construct a Bayesian solver in
this strong sense without restrictive assumptions, as discussed in Wang
et al. (2018).
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the distribution of all numerically possible trajectories with a
set of sample paths.To compute these sample paths,Chkrebtii
et al. (2016) draws them from a (Bayesian) Gaussian pro-
cess (GP) regression; Conrad et al. (2017); Teymur et al.
(2016); Lie et al. (2019); Teymur et al. (2018) perturb classi-
cal estimates after an integration step with a suitably scaled
Gaussian noise; and Abdulle and Garegnani (2020) perturbs
the classical estimate instead by choosing a stochastic step-
size. While Conrad et al. (2017); Teymur et al. (2016); Lie
et al. (2019); Abdulle and Garegnani (2020); Teymur et al.
(2018) can be thought of as (non-Bayesian) ‘stochastic wrap-
pers’ around classical solvers, which produce samples with
the same convergence rate, Chkrebtii et al. (2016) employs—
like the filter—GP regression to represent the belief on x .
While the Gaussian ODE filter can convergence with poly-
nomial order (see results in this paper), However, Chkrebtii
et al. (2016) only show first-order convergence rates and also
construct a sample representation of numerical errors, from
which samples are drawn iteratively. A conceptual and exper-
imental comparison between the filter and Chkrebtii et al.
(2016) can be found in Schober et al. (2019). An additional
numerical test against Conrad et al. (2017) was given by Ker-
sting and Hennig (2016). Moreover, Tronarp et al. (2019)
recently introduced a particle ODE filter, which combines
a filtering-based solver with a sampling-based uncertainty
quantification (UQ), and compared it numerically with Con-
rad et al. (2017) and Chkrebtii et al. (2016).

All of the above sampling-basedmethods can hence repre-
sentmore expressive, non-Gaussian posteriors (as, e.g., desir-
able for bifurcations), but multiply the computational cost of
the underlying method by the number of samples. ODE fil-
ters are, in contrast, not a perturbation of known methods,
but novel methods designed for computational speed and for
a robust treatment of intermediate uncertain values (such as
the evaluations of f at estimated points). Unless paralleliza-
tion of the samples in the sampling-based solvers is possible
and inexpensive, one can spend the computational budget
for generating additional samples on dividing the step size
h by the number of samples, and can thereby polynomially
decrease the error. Its Gaussian UQ, however, should not be
regarded as the true UQ—in particular for chaotic systems
whose uncertainty can be better represented by sampling-
based solvers, see, e.g., Conrad et al. (2017, Figure 1) and
Abdulle and Garegnani (2020, Figure 2)—but as a rough
inexpensive probabilistic treatment of intermediate values
and final errors which is supposed to, on average, guide
the posterior mean towards the true x . Therefore, it is in
a way more similar to classical non-stochastic solvers than
to sampling-based stochastic solvers and, unlike sampling-
based solvers, puts emphasis on computational speed over
statistical accuracy. Nevertheless, its Gaussian UQ is suffi-
cient to make the forward models in ODE inverse problems

more ‘uncertainty-aware’; see Kersting et al. (2020, Section
3).

Accordingly, the convergence results in this paper concern
the convergence rate of the posterior mean to the true solu-
tion, while the theoretical results from Teymur et al. (2016);
Chkrebtii et al. (2016); Conrad et al. (2017); Lie et al. (2019);
Abdulle and Garegnani (2020); Teymur et al. (2018) provide
convergence rates of the variance of the non-Gaussian empir-
ical measure of samples (and not for an individual sample).

1.3 Relation to filtering theory

While Gaussian (Kalman) filtering was first applied to the
solution of ODEs by Kersting and Hennig (2016) and
Schober et al. (2019), it has previously been analyzed in the
filtering, data assimilation as well as linear system theory
community. The convergence results in this paper are con-
cerned with its asymptotics when the step size h (aka time
step between data points) goes to zero. In the classical filter-
ing setting,where the data comes froman external sensor, this
quantity is not treated as a variable, as it is considered a prop-
erty of the data and not, like in our case, of the algorithm.
Accordingly, the standard books lack such an analysis for
h → 0—see Jazwinski (1970); Anderson andMoore (1979);
Maybeck (1979) for filtering, Law et al. (2015); Reich and
Cotter (2015) for data assimilation and Callier and Desoer
(1991) for linear system theory—andwebelieve that our con-
vergence results are completely novel. It is conceivable that,
also for these communities, this paper may be of interest in
settings where the data collection mechanism can be actively
chosen, e.g., when the frequency of the data can be varied or
sensors of different frequencies can be used.

1.4 Outline

The paper begins with a brief introduction to Gaussian ODE
filtering in Sect. 2. Next, Sects. 3 and 5 provide auxiliary
bounds on the flow map of the ODE and on intermediate
quantities of the filter, respectively. With the help of these
bounds, Sects. 6 and 7 establish local and global conver-
gence rates of the filtering mean, respectively. In light of
these rates, Sect. 8 analyses for which measurement noise
models the posterior credible intervals are well calibrated.
These theoretical results are experimentally confirmed and
discussed in Sect. 9. Section 10 concludes with a high-level
discussion.

1.5 Notation

We will use the notation [n] := {0, . . . , n − 1}. For vectors
and matrices, we will use zero-based numbering, e.g., x =
(x0, . . . , xd−1) ∈ R

d . For a matrix P ∈ R
n×m and (i, j) ∈

[n]× [m], we will write Pi,: ∈ R
1×m for the i th row and P:, j
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for the j th column of P . A fixed but arbitrary norm on R
d

will be denoted by ‖ · ‖. The minimum and maximum of two
real numbers a and b will be denoted by a ∧ b and a ∨ b,
respectively. Vectors that span all q modeled derivatives will
be denoted by bold symbols, such as x.

2 Gaussian ODE filtering

This section defines how a Gaussian filter can solve the IVP
Eq. (1). In the various subsections, we first explain the choice
of prior on x , then describe how the algorithm computes a
posterior output from this prior (by defining a numerical inte-
grator Ψ ), and add explanations on the measurement noise
of the derivative observations. To alternatively understand
how this algorithm can be derived as an extension of generic
Gaussian filtering in probabilistic state space models, see the
concise presentation in (Kersting et al. 2020, Supplement A).

2.1 Prior on x

In PN, it is common (Hennig et al. 2015, Section 3(a)) to
put a prior measure on the unknown solution x . Often, for
fast Bayesian inference by linear algebra (Rasmussen and
Williams 2006, Chapter 2), this prior is Gaussian. To enable
GP inference in linear time byKalmanfiltering (Särkkä 2013,
Chapter 4.3), we further restrict the prior to Markov pro-
cesses. As discussed in Särkkä and Solin (2019, Chapter
12.4), a wide class of such Gauss–Markov processes can be
captured by a law of the (strong) solution (Øksendal 2003,
Chapter 5.3) of a linear SDE with Gaussian initial condi-
tion. Here—as we, by Eq. (1), have information on at least
one derivative of x—the prior also includes the first q ∈ N

derivatives. Therefore, for all j ∈ [d], we define the vector
of time derivatives by X j =

(
X (0)

j , . . . , X (q)
j

)ᵀ
. We define

X j as a (q + 1)-dimensional stochastic process via the SDE

dX j (t) =
(
dX (0)

j (t), . . . , dX (q−1)
j (t), dX (q)

j (t)
)ᵀ

=

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
...

. . .
. . . 0

...
. . . 0 1

c0 . . . . . . cq

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

X (0)
j (t)
...

X (q−1)
j (t)

X (q)
j (t)

⎞
⎟⎟⎟⎟⎠

dt +

⎛
⎜⎜⎜⎝

0
...

0
σ j

⎞
⎟⎟⎟⎠ dBj (t),

(2)

driven by mutually independent one-dimensional Brownian
motions {Bj ; j ∈ [d]} (independent of X(0)) scaled by
σ j > 0, with initial condition X j (0) ∼ N (m j (0), Pj (0)
). We assume that

{
X j (0); j ∈ [d]} are independent. In

other words, we model the unknown i th derivative of the
j th dimension of the solution x of the IVP Eq. (1), denoted

by x (i)
j , as a draw from a real-valued, one-dimensional

GP X (i)
j , for all i ∈ [q + 1] and j ∈ [d], such that

X (q)
j is defined by (c0, . . . , cq) as well as the Brownian

motion scale σ j and X (i−1)
j is defined to be the integral

of X (i)
j . Note that, by the independence of the components

of the d-dimensional Brownian motion, the components{{
X j (t); 0 ≤ t ≤ T

} ; j ∈ [d]} of {X(t); 0 ≤ t ≤ T } are
independent2. The (strong) solution of Eq. (2) is a Gauss–
Markov process with mean m j : [0, T ] → R

q+1 and
covariance matrix Pj : [0, T ] → R

(q+1)×(q+1) given by

m j (t) = A(t)m j (0), (3)

Pj (t) = A(t)Pj (0)A(t)ᵀ + Q(t), (4)

where the matrices A(t), Q(t) ∈ R
(q+1)×(q+1) yielded by

the SDE Eq. (2) are known in closed form Särkkä (2006,
Theorem 2.9) (see Eq. (77)). The precise choice of the prior
stochastic process X depends on the choice of (c0, . . . , cq) ∈
R
q+1 in Eq. (2). While the below algorithm works for all

choices of c, we restrict our attention to the case of

(c0, . . . , cq) := (0, . . . , 0,−θ), for some θ ≥ 0, (5)

where the q-times integrated Brownian motion (IBM) and
the q-times integrated Ornstein–Uhlenbeck process (IOUP)
with drift parameter θ is the unique solution of Eq. (2), in the
case of θ = 0 and θ > 0, respectively, (Karatzas and Shreve
1991, Chapter 5: Example 6.8). In this case, the matrices A
and Q from Eqs. (3) and (4) are given by

A(t)i j =
{

Ii≤ j
t j−i

( j−i)! , if j = q,

tq−i

(q−i)! − θ
∑∞

k=q+1−i
(−θ)k+i−q−1tk

k! , if j = q,

(6)

Q(t)i j = σ 2 t2q+1−i− j

(2q + 1 − i − j)(q − i)!(q − j)!
+ Θ

(
t2q+2−i− j

)
. (7)

(Derivations of Eqs. (6) and (7), as well as the precise form
of Q without Θ(t2q+2−i− j ), are presented in Appendix A.)
Hence, for all i ∈ [q + 1], the prediction of step size h of the

2 More involved correlation models of
{{

X j (t); 0≤t≤T
} ; j ∈ [d]}

are straightforward to incorporate into the SDE Eq. (2), but seem com-
plicated to analyze. Therefore, we restrict our attention to independent
dimensions. See Appendix B for an explanation of this restriction. Note
that one can also use a state space vector X(t) which models other
features of x(t) than the derivatives, as demonstrated with Fourier sum-
mands in Kersting and Mahsereci (2020).
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i th derivative from any state u ∈ R
q+1 is given by

[A(t)u]i =
q∑

k=i

t k−i

(k − i)!uk

− θ

⎡
⎣

∞∑
k=q+1−i

(−θ)k+i−q−1

k! tk

⎤
⎦ uq . (8)

2.2 The algorithm

To avoid the introduction of additional indices, wewill define
the algorithmΨ for d = 1; for statements on the general case
of d ∈ Nwewill use the same symbols fromEq. (10)–(15) as
vectors over the whole dimension—see, e.g., Eq. (31) for a
statement about a general r ∈ R

d . By the independence of the
dimensions of X , due to Eq. (2), extension to d ∈ N amounts
to applyingΨ to every dimension independently (recall Foot-
note 2). Accordingly, we may in many of the below proofs
w.l.o.g. assume d = 1. Now, as previously spelled out in
Kersting and Hennig (2016); Schober et al. (2019), Bayesian
filtering of X—i.e., iteratively conditioning X on the infor-
mation on X (1) from evaluations of f at the mean of the
current conditioned X (0)—yields the following numerical
method Ψ . Let m(t) = (m(0)(t), . . . ,m(q)(t))ᵀ ∈ R

q+1 be
an arbitrary state at some point in time t ∈ [0, T ] (i.e.,m(i)(t)
is an estimate for x (i)(t)), and let P(t) ∈ R

(q+1)×(q+1) be
the covariance matrix of x (i)(t). For t ∈ [0, T ], let the cur-
rent estimate of x(t) be a normal distributionN (m(t), P(t)),
i.e., the mean m(t) ∈ R

q+1 represents the best numerical
estimate (given data {y(h), . . . , y(t)}, see Eq. (12)) and the
covariance matrix P(t) ∈ R

(q+1)×(q+1) its uncertainty. For
the time step t → t + h of size h > 0, the ODE filter first
computes the prediction step consisting of predictive mean

m−(t + h):= A(h)m(t) ∈ R
q+1, (9)

and predictive covariance

P−(t + h) := A(h)P(t)A(h)ᵀ + Q(h) ∈ R
(q+1)×(q+1),

(10)

with A and Q generally defined by Eq. (77) and, in the con-
sidered particular case of Eq. (5), by Eqs. (6) and (7). In the
subsequent step, the following quantities are computed first:
the Kalman gain

β(t + h) = (β(0)(t + h), . . . , β(q)(t + h))ᵀ

:= P−(t + h):1
(P−(t + h))11 + R(t + h)

∈ R
(q+1)×1, (11)

the measurement/data on ẋ

y(t + h) := f
(
m−,(0)(t + h)

)
∈ R, (12)

and innovation/residual

r(t + h) := y(t + h) − m−,(1)(t + h) ∈ R. (13)

Here, R denotes the variance of y (the ‘measurement noise’)
and captures the squared difference between the data y(t +
h) = f (m−(t + h)) that the algorithm actually receives and
the idealized data ẋ(t + h) = f (x(t + h)) that it ‘should’
receive (see Sect. 2.3). Finally, the mean and the covariance
matrix are conditioned on this data, which yields the updated
mean

Ψ P(t),h(m(t)) := m(t + h)

= m−(t + h) + β(t + h)r(t + h), (14)

and the updated covariance

P(t + h) := P−(t + h) − P−(t + h):,1P−(t + h)1,:
P−(t + h)11 + R(t + h)

.

(15)

This concludes the step t → t + h, with the Gaussian distri-
butionN (m(t + h), P(t + h)) over x(t + h). The algorithm
is iterated by computing m(t + 2h) := Ψ P(t+h),h(m(t + h))

as well as repeating Eq. (10) and (15), with P(t + h) instead
of P(t), to obtain P(t + 2h). In the following, to avoid nota-
tional clutter, the dependence of the above quantities on t , h
andσ will be omitted if their values are unambiguous. Param-
eter adaptation reminiscent of classical methods (e.g., for σ

s.t. the added variance per step coincide with standard error
estimates) has been explored in Schober et al. (2019, Section
4).

This filter is essentially an iterative application of Bayes
rule (see, e.g., Särkkä (2013, Chapter 4)) based on the prior
X on x specified by Eq. (2) (entering the algorithm via A
and Q) and the measurement model y ∼ N (ẋ, R). Since
the measurement model is a likelihood by another name and
therefore forms a complete Bayesian model together with
the prior X , it remains to detail the measurement model
(recall Sect. 2.1 for the choice of prior). Concerning the
data generation mechanism for y Eq. (12), we only con-
sider the maximum-a-posteriori point estimate of ẋ(t) given
N (m−,(0)(t), P−

00(t)); a discussion of more involved statisti-
cal models for y as well as an algorithm box for the Gaussian
ODE filter can be found in Schober et al. (2019, Subsection
2.2). Next, for lack of such a discussion for R, we will exam-
ine different choices of R—which have proved central to the
UQ of the filter (Kersting and Hennig 2016) and will turn out
to affect global convergence properties in Sect. 7.
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2.3 Measurement noise R

Two sources of uncertainty add to R(t): noise from impre-
cise knowledge of x(t) and f . Given f , previous integration
steps of the filter (as well as an imprecise initial value) inject
uncertainty about how close m−(t) is to x(t) and how close
y = f (m−(t)) is to ẋ(t)) = f (x(t)). This uncertainty stems
from the discretization error ‖m−,(0)(t) − x(t)‖ and, hence,
tends to increase with h. Additionally, there can be uncer-
tainty from a misspecified f , e.g., when f has estimated
parameters, or from numerically imprecise evaluations of f ,
which can be added to R—a functionality which classical
solvers do not possess. In this paper, since R depends on h
via the numerical uncertainty on x(t), we analyze the influ-
ence of noise R of order p ∈ [1,∞] (see Assumption 4) on
the quality of the solution to illuminate for which orders of
noise we can trust the solution to which extent and when we
should, instead of decreasing h, rather spend computational
budget on specifying or evaluating f more precisely. The
explicit dependence of the noise on its order p in h resembles,
despite the fundamentally different role of R compared to
additive noise inConrad et al. (2017);Abdulle andGaregnani
(2020), the variable p in Conrad et al. (2017, Assumption
1) and Abdulle and Garegnani (2020, Assumption 2.2) in
the sense that the analysis highlights how uncertainty of this
order can still be modeled without breaking the convergence
rates. (Adaptive noise models are computationally feasible
(Kersting and Hennig 2016) but lie outside the scope of our
analysis.)

3 Regularity of flow

Before we proceed to the analysis of Ψ , we provide all regu-
larity results necessary for arbitrary q, d ∈ N in this section.

Assumption 1 The vector field f ∈ Cq(Rd ; R
d) is globally

Lipschitz, and all its derivatives of order up to q are uniformly
bounded and globally Lipschitz, i.e., there exists some L > 0
such that ‖Dα f ‖∞ ≤ L for all multi-indices α ∈ N

d
0 with

1 ≤ ∑
i αi ≤ q, and ‖Dα f (a) − Dα f (b)‖ ≤ L‖a − b‖ for

all multi-indices α ∈ N
d
0 with 0 ≤ ∑

i αi ≤ q.

Assumption 1 and the Picard–Lindelöf theorem imply that
the solution x is a well-defined element ofCq+1([0, T ]; R

d).
For i ∈ [q + 1], we denote di x

dt i
by x (i). Recall that, by a

bold symbol, we denote the vector of these derivatives: x ≡
(x (0), . . . , x (q))ᵀ. In particular, the solution x of Eq. (1) is
denoted by x (0). Analogously, we denote the flow of theODE
Eq. (1) by Φ(0), i.e., Φ

(0)
t (x0) ≡ x (0)(t), and, for all i ∈

[q + 1], its i th partial derivative with respect to t by Φ(i), so
that Φ(i)

t (x0) ≡ x (i)(t).

Lemma 1 Under Assumption 1, for all a ∈ R
d and all h > 0,

∥∥∥∥∥Φ
(i)
h (a) −

q∑
k=i

hk−i

(k − i)!Φ
(k)
0 (a)

∥∥∥∥∥ ≤ Khq+1−i . (16)

Here, and in the sequel, K > 0 denotes a constant inde-
pendent of h and θ which may change from line to line.

Proof By Assumption 1, Φ(q+1) exists and is bounded by
‖Φ(q+1)‖ ≤ L , which can be seen by applying the chain rule
q times to both sides of Eq. (1).Now, applying ‖Φ(q+1)‖ ≤ L
to the term Φ

(q+1)
τ (a) (for some τ ∈ (0, h)) in the Lagrange

remainder of the (q− i)th-order Taylor expansion ofΦ(i)
h (a)

yields Eq. (16). ��
Lemma 2 Under Assumption 1 and for all sufficiently small
h > 0,

sup
a =b∈Rd

∥∥∥Φ(0)
h (a) − Φ

(0)
h (b)

∥∥∥
‖a − b‖ ≤ 1 + 2Lh. (17)

Proof Immediate corollary of Teschl (2012, Theorem 2.8).
��

Global convergence (Sect. 7) will require the following
generalization of Lemma 2.

Lemma 3 Let q = 1. Then, under Assumption 1 and for all
sufficiently small h > 0,

sup
a =b∈Rd

|||Φh(a) − Φh(b)|||h
‖a − b‖ ≤ 1 + Kh, (18)

where given the norm ‖ · ‖ on R
d and h > 0, the new norm

||| · |||h on R
(q+1)×d is defined by

|||a|||h :=
q∑

i=0

hi
∥∥ai,:

∥∥ . (19)

Remark 1 The necessity of ||| · |||h stems from the fact that—
unlike other ODE solvers—the ODE filter Ψ additionally
estimates and uses the first q derivatives in its state m ∈
R

(q+1)×d , whose development cannot be bounded in ‖ · ‖,
but in ||| · |||h . The norm ||| · |||h is used to make rigorous the
intuition that the estimates of the solution’s time derivative
are ‘one order of h worse per derivative.’

Proof We bound the second summand of

|||Φh(a) − Φh(b)|||h eq. (19)=∥∥∥Φ(0)
h (a) − Φ

(0)
h (b)

∥∥∥
︸ ︷︷ ︸

≤(1+2Lh)‖a−b‖, by eq. (17)

+ h
∥∥∥ Φ

(1)
h (a)︸ ︷︷ ︸

= f
(
Φ

(0)
h (a)

)
− Φ

(1)
h (b)︸ ︷︷ ︸

= f
(
Φ

(0)
h (b)

)

∥∥∥

(20)
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by

∥∥∥ f
(
Φ

(0)
h (a)

)
− f

(
Φ

(0)
h (b)

)∥∥∥ Ass. 1≤ (21)

L
∥∥∥Φ(0)

h (a) − Φ
(0)
h (b)

∥∥∥ eq. (17)≤ L(1 + 2Lh) ‖a − b‖ .

Inserting Eq. (21) into Eq. (20) concludes the proof. ��

4 The role of the state misalignments ı

In Gaussian ODE filtering, the interconnection between the
estimates of the ODE solution x(t) = x (0)(t) and its first q
derivatives {x (1)(t), . . . , x (q)(t)} is intricate. From a purely
analytical point of view, every possible estimatem(t) of x(t)
comeswith a fixed set of derivatives,which are implied by the
ODE, for the following reason: Clearly, by Eq. (1), the esti-
mate m(1)(t) of x (1)(t) ought to be f (m(t)). More generally
(for i ∈ [q + 1]) the estimate m(i)(t) of x (i)(t) is determined
by the ODE as well. To see this, let us first recursively define
f (i) : R

d → R
d by f (0)(a) := a, f (1)(a) := f (a) and

f (i)(a) := [∇x f (i−1) · f ](a). Now, differentiating the ODE,
Eq. (1), (i − 1)-times by the chain rule yields

x (i)(t) = f (i−1)(t)
(
x (0)(t)

)
, (22)

which implies that m(i)(t) ought to be f (i−1)(t)
(
m(0)(t)

)
Since

Φ
(i)
0

(
m(0)(nh)

)
= f (i−1)

(
m(0)(nh)

)
(23)

(which we prove in Appendix E), this amounts to requiring
that

m(i)(t)
!= Φ

(i)
0

(
m(0)(nh)

)
. (24)

Since Φ
(i)
0 is (recall Sect. 3) the i th time derivative of the

flowmapΦ(0) at t = 0, this simply means thatm(i)(t)would
be set to the ‘true’ derivatives in the case where the initial
condition of the ODE, Eq. (1), is x(0) = m(0)(t) instead
of x(0) = x0—or, more loosely speaking, that the derivative
estimatesm(i)(t) are forced to comply withm(0)(t), irrespec-
tive of our belief x (i)(t) ∼ N (m(i)(t), Pii (t)). The Gaussian
ODE filter, however, does not use this (intractable) analyt-
ical approach. Instead, it jointly models and infers x (0)(t)
and its first q derivatives {x (1)(t), . . . , x (q)(t)} in a state
space X , as detailed in Sect. 2. The thus-computed filter-
ing mean estimates m(i)(t) depend not only on the ODE but
also on the statistical model—namely on the prior (SDE)
and measurement noise R; recall Sects. 2.1 and 2.3. In fact,
the analytically desirable derivative estimate, Eq. (24), is,

for i = 1, only satisfied if R = 0 (which can be seen from
Eq. (14)), and generally does not hold for i ≥ 2 since both
f (i−1) andΦ(i) are inaccessible to the algorithm. The numer-
ical example in Appendix C clarifies that δ(i) is likely to be
strictly positive, even after the first step 0 → h.

This inevitable mismatch, between exact analysis and
approximate statistics, motivates the following definition of
the i th state i th state misalignment at time t :

δ(i)(t) :=
∥∥∥m(i)(t) − Φ

(i)
0

(
m(0)(t)

)∥∥∥ ≥ 0. (25)

Intuitively speaking, δ(i)(t) quantifies how large this mis-
match is for the i th derivative at time t . Note that δ(i)(t) = 0
if and only if Eq. (24) holds—i.e., for i = 1 iff R = 0 (which
can be seen from Eq. (14)) and only by coincidence for i ≥ 2
since both f (i−1) and Φ

(i)
0 are inaccessible to the algorithm.

(Since Φ
(0)
0 = Id, δ(0)(t) = 0 for all t .)

The possibility of δ(i) > 0, for i ≥ 1, is inconvenient for
the below worst-case analysis since (if Eq. (24) held true and
δ(i) ≡ 0) the prediction step of the drift-less IBM prediction
(θ = 0) would coincide with a Taylor expansions of the flow
map Φ

(i)
0 ; see Eq. (8). But, because δ(i) = 0 in general, we

have to additionally bound the influence of δ ≥ 0 which
complicates the below proofs further.

Fortunately, we can locally bound the import of δ(i) by
the easy Lemma 7 and globally by the more complicated
Lemma 11 (see Sect. 7.3). Intuitively, these bounds demon-
strate that the order of the deviation from a Taylor expansion
of the statem = [m(0), . . . ,m(q)] due to δ is not smaller than
the remainder of the Taylor expansion. This means, more
loosely speaking, that the import of the δ(i) is swallowed
by the Taylor remainder. This effect is locally captured by
Lemma4andglobally byLemma12.Theglobal convergence
rates of δ(i)(T ), as provided by Lemma 12, are experimen-
tally demonstrated in Appendix D.

5 Auxiliary bounds on intermediate
quantities

Recall from Eq. (5) that θ = 0 and θ > 0 denote the
cases of IBM and IOUP prior with drift coefficient θ , respec-
tively. The ODE filter Ψ iteratively computes the filtering
mean m(nh) = (m(0)(nh), . . . ,m(q)(nh))ᵀ ∈ R

(q+1) as
well as error covariance matrices P(nh) ∈ R on the mesh
{nh}T /h

n=0. (Here and in the following, we assume w.l.o.g. that
T /h ∈ N.) Ideally, the truncation error over all deriva-
tives

ε(nh) := (ε(0)(nh), . . . , ε(q)(nh))ᵀ := m(nh) − x(nh),

(26)
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falls quickly as h → 0 and is estimated by the standard
deviation

√
P00(nh). Next, we present a classical worst-case

convergence analysis over all f satisfying Assumption 1;
see Sect. 10 for a discussion of the desirability and feasibil-
ity of an average-case analysis. To this end, we bound the
added error of every step by intermediate values, defined in
Eqs. (11) and (13),

Δ(i)((n + 1)h) :=
∥∥∥Ψ (i)

P(nh),h(m(nh)) − Φ
(i)
h

(
m(0)(nh)

)∥∥∥ (27)

eq. (14)≤
∥∥∥(A(h)m(nh))i − Φ

(i)
h

(
m(0)(nh)

)∥∥∥
︸ ︷︷ ︸

=:Δ−(i)((n+1)h)

+
∥∥∥β(i)((n + 1)h)

∥∥∥ ‖r((n + 1)h)‖ , (28)

and bound these quantities in the order Δ−(i), r , β(i). These
bounds will be needed for the local and global convergence
analysis in Sects. 6 and 7, respectively. Note that, intuitively,
Δ−(i)((n + 1)h) and Δ(i)((n + 1)h) denote the additional
numerical error which is added in the (n + 1)th step to the
i th derivative of the predictive mean m−,(i)(t + h) and the
updated mean m(i)(t + h), respectively.

Lemma 4 Under Assumption 1, for all i ∈ [q + 1] and all
h > 0,

Δ−(i)((n + 1)h) ≤K
[
1 + θ

∥∥∥m(q)(nh)

∥∥∥
]
hq+1−i

+
q∑

k=i

hk−i

(k − i)!δ
(k)(nh). (29)

Proof Wemay assume, as explained in Sect. 2.2, without loss
of generality that d = 1. We apply the triangle inequality to
the definition of Δ−(i)((n + 1)h), as defined in Eq. (28),
which, by Eq. (8), yields

Δ−(i)((n + 1)h)

≤
q∑

k=i

hk−i

(k − i)! δ
(k)(nh) + K θ

∣∣∣m(q)(nh)

∣∣∣ hq+1−i

+
∣∣∣∣∣∣

q∑
l=i

hl−i

(l − i)!Φ
(l)
0

(
m(0)(nh)

)
− Φ

(i)
h

(
m(0)(nh)

)
∣∣∣∣∣∣

︸ ︷︷ ︸
≤Khq+1−i , by eq. (16)

. (30)

��
Lemma 5 Under Assumption 1 and for all sufficiently small
h > 0,

‖r((n + 1)h)‖ ≤K
[
1 + θ

∥∥∥m(q)(nh)

∥∥∥
]
hq

+ K
q∑

k=1

hk−1

(k − 1)!δ
(k)(nh). (31)

Proof See Appendix F. ��
To bound the Kalman gains β(nh), we first need to assume
that the orders of the initial covariance matrices are suf-
ficiently high (matching the latter required orders of the
initialization error; see Assumption 3).

Assumption 2 The entries of the initial covariance matrix
P(0) satisfy, for all k, l ∈ [q+1],‖P(0)k,l‖ ≤ K0h2q+1−k−l ,
where K0 > 0 is a constant independent of h.

We make this assumption, as well as Assumption 3,
explicit (instead of just making the stronger assumption of
exact initializationswith zero variance), because it highlights
how statistical or numerical uncertainty on the initial value
effects the accuracy of the output of the filter—a novel func-
tionality of PN with the potential to facilitate a management
of the computational budget across a computational chain
with respect to the respective perturbations from different
sources of uncertainty (Hennig et al. 2015, Section 3(d)).

Lemma 6 Under Assumption 2, for all i ∈ [q + 1] and for
all h > 0, ‖β(i)(h)‖ ≤ Kh1−i .

Proof Again, w.l.o.g. d = 1. Application of the orders of
A and Q from Eqs. (6) and (7), the triangle inequality and
Assumption 2 to the definition of P− in Eq. (10) yields

∣∣P−(h)k,l
∣∣ eq. (10)≤

∣∣∣[A(h)P(0)A(h)ᵀ
]
k,l

∣∣∣ + ∣∣Q(h)k,l
∣∣

eqs. (6),(7)≤ K

[ q∑
a=k

q∑
b=l

∣∣P(0)a,b
∣∣ ha+b−k−l

+ 2θ
q−1∑
b=l

∣∣P(0)q,b
∣∣

+ θ2
∣∣P(0)q,q

∣∣ + h2q+1−k−l
]

Ass. 2≤ K [1 + θ + θ2]h2q+1−k−l . (32)

Recall that P and Q are (positive semi-definite) covariance
matrices; hence, P−(h)1,1 ≥ Kh2q−1. Inserting these orders
into the definition of β(i) (Eq. (11)), recalling that R ≥ 0,
and removing the dependence on θ by reducing the fraction
conclude the proof. ��

6 Local convergence rates

With the above bounds on intermediate algorithmic quanti-
ties (involving state misalignments δ(i)) in place, we only
need an additional assumption to proceed—via a bound on
δ(i)(0)—to our first main result on local convergence orders
of Ψ .
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Assumption 3 The initial errors on the initial estimate of
the i th derivative m(i)(0) satisfy ‖ε(i)(0)‖ = ‖m(i)(0) −
x (i)(0)‖ ≤ K0hq+1−i . (This assumption is, like Assump-
tion 2, weaker than the standard assumption of exact initial-
izations.)

Lemma 7 Under Assumptions 1 and 3, for all i ∈ [q + 1]
and for all h > 0, δ(i)(0) ≤ Khq+1−i .

Proof The claim follows, using Assumptions 1 and 3, from

δ(i)(0) ≤
∥∥∥m(i)(0) − x (i)(0)

∥∥∥
︸ ︷︷ ︸
=‖ε(i)(0)‖≤K0hq+1−i

+
∥∥∥ f (i−1)

(
x (0)(0)

)
− f (i−1)

(
m(0)(0)

)∥∥∥
︸ ︷︷ ︸

≤L‖ε(0)(0)‖≤LK0hq+1

. (33)

��
Now, we can bound the local truncation error ε(0)(h) as
defined in Eq. (26).

Theorem 8 (Local Truncation Error) Under the Assump-
tions 1 to 3 and for all sufficiently small h > 0,

∥∥∥ε(0)(h)

∥∥∥ ≤ |||ε(h)|||h ≤ K
[
1 + θ

∥∥∥m(q)(0)
∥∥∥
]
hq+1. (34)

Proof By the triangle inequality for ||| · |||h and subsequent
application of Lemma 3 and Assumption 3 to the second
summand of the resulting inequality, we obtain

|||ε(h)|||h ≤
∣∣∣
∣∣∣
∣∣∣Ψ P(0),h (m(0)) − Φh

(
x (0)(0)

)∣∣∣
∣∣∣
∣∣∣
h︸ ︷︷ ︸

=∑q
i=0 h

iΔ(i)(h), by eq. (27)

+
∣∣∣
∣∣∣
∣∣∣Φh

(
x (0)(0)

)
− Φh

(
m(0)(0)

)∣∣∣
∣∣∣
∣∣∣
h︸ ︷︷ ︸

≤(1+Kh)‖ε(0)(0)‖≤Khq+1

. (35)

The remaining bound on Δ(i)(h), for all i ∈ [q + 1] and suf-
ficiently small h > 0, is obtained by insertion of the bounds
from Lemmas 4 to 6 (in the case of n = 0), into Eq. (28):

Δ(i)(h) ≤ K
[
1 + θ

∥∥∥m(q)(0)
∥∥∥
]
hq+1−i

+ K
q∑

k=1

hk−1

(k − 1)!δ
(k)(nh) (36)

Lemma 7≤ K
[
1 + θ

∥∥∥m(q)(0)
∥∥∥
]
hq+1−i . (37)

Insertion of Eq. (37) into Eq. (35) and ‖ε(0)(h)‖ ≤ |||ε(h)|||h
(by Eq. (19)) concludes the proof. ��

Remark 2 Theorem 8 establishes a bound of order hq+1 on
the local truncation error ε(0)(h) on x(h) after one step h.

Moreover, by the definition Eq. (19) of ||| · |||h , this theo-
rem also implies additional bounds of order hq+1−i on the
error ε(i)(h) on the i th derivative x (i)(h) for all i ∈ [q + 1].
Such derivative bounds are (to the best of our knowledge)
not available for classical numerical solvers, since they do
not explicitly model the derivatives in the first place. These
bounds could be useful for subsequent computations based
on the ODE trajectory (Hennig et al. 2015).

Unsurprisingly, as the mean prediction (recall Eq. (8))
deviates from a pure qth order Taylor expansion by
K θ‖m(q)(0)‖hq+1 for an IOUP prior (i.e., θ > 0 in Eq. (5)),
the constant in front of the local hq+1 convergence rate
depends on both θ and m(q)(0) in the IOUP case. A global
analysis for IOUP is therefore more complicated than for
IBM: Recall from Eq. (8) that, for q = 1, the mean predic-
tion for x((n + 1)h) is

(
m−,(0)((n + 1)h)

m−,(1)((n + 1)h)

)
eq. (8)=

(
m(0)(nh) + hm(1)(nh) − θ

[
h2
2! + O(h3)

]
m(1)(nh)

e−θhm−,(1)(nh)

)
,

(38)

which pulls both m−,(0) and m−,(1) towards zero (or some
other prior mean) compared to the prediction given by its
Taylor expansion for θ = 0. While this is useful for ODEs
converging to zero, such as ẋ = −x , it is problematic for
diverging ODEs, such as ẋ = x (Magnani et al. 2017).
As shown in Theorem 8, this effect is asymptotically neg-
ligible for local convergence, but it might matter globally
and, therefore, might necessitate stronger assumptions on
f than Assumption 1, such as a bound on ‖ f ‖∞ which
would globally bound {y(nh); n = 0, . . . , T /h} and thereby
{m(1)(nh); n = 0, . . . , T /h} in Eq. (38). It is furthermore
conceivable that a global bound for IOUP would depend on
the relation between θ and ‖ f ‖∞ in a non-trivial way. The
inclusion of IOUP (θ > 0)would hence complicate the below
proofs further. Therefore,we restrict the followingfirst global
analysis to IBM (θ = 0).

7 Global analysis

As explained in Remark 2, we only consider the case of
the IBM prior, i.e., θ = 0, in this section. Moreover, we
restrict our analysis to q = 1 in this first global analysis.
Although we only have definite knowledge for q = 1, we
believe that the convergence rates might also hold for higher
q ∈ N—which we experimentally test in Sect. 9.1. More-
over, we believe that proofs analogous to the below proofs
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might work out for higher q ∈ N and that deriving a general-
ized version of Proposition 10 for higher q is the bottleneck
for such proofs (see Sect. 10 for a discussion of these restric-
tions).

While, for local convergence, all noise models R yield
the same convergence rates in Theorem 8, it is unclear how
the order of R in h (as described in Sect. 2.3) affects global
convergence rates: e.g., for the limiting case R ≡ Kh0, the
steady-state Kalman gains β∞ would converge to zero (see
Eqs. (43) and 44 below) for h → 0, and hence the evalua-
tion of f would not be taken into account—yielding a filter
Ψ which assumes that the evaluations of f are equally off,
regardless of h > 0, and eventually just extrapolates along
the prior without global convergence of the posterior mean
m. For the opposite limiting case R ≡ lim p→∞ Khp ≡ 0,
it has already been shown in Schober et al. (2019, Propo-
sition 1 and Theorem 1) that—in the steady state and for
q = 1, 2—the filter Ψ inherits global convergence rates
from known multistep methods in Nordsieck form Nord-
sieck (1962). To explore a more general noise model, we
assume a fixed noise model R ≡ Khp with arbitrary order
p.

In the following, we analyze how small p can be in order
forΨ to exhibit fast global convergence (cf. the similar role of
the order p of perturbations in Conrad et al. (2017, Assump-
tion 1) and Abdulle and Garegnani (2020, Assumption 2.2)).
In light of Theorem 8, the highest possible global conver-
gence rate is O(h)—which will indeed be obtained for all
p ∈ [1,∞] in Theorem 14. Since every extrapolation step of
Ψ from t to t + h depends not only on the current state, but
also on the covariance matrix P(t)—which itself depends
on all previous steps—Ψ is neither a single-step nor a mul-
tistep method. Contrary to Schober et al. (2019), we do not
restrict our theoretical analysis to the steady-state case, but
provide our results under the weaker Assumptions 2 and 3
that were already sufficient for local convergence in Theorem
8—which is made possible by the bounds Eqs. (48) and (49)
in Proposition 10.

7.1 Outline of global convergence proof

The goal of the following sequence of proofs in Sect. 7 is
Theorem 14. It is proved by a special version of the discrete
Grönwall inequality (Clark 1987) whose prerequisite is pro-
vided in Lemma 13. This Lemma 13 follows from Lemma 3
(on the regularity of the flow map Φ t ) as well as Lemma 12
which provides a bound on the maximal increment of the
numerical error stemming from local truncation errors. For
the proof of Lemma 12, we first have to establish

(i) global bounds on the Kalman gains β(0) and β(1) by the
inequalities Eqs. (48) and (49) in Proposition 10, and

(ii) a global bound on the state misalignment δ(1) in
Lemma 11.

In Sects. 7.2–7.4, we will collect these inequalities in the
order of their numbering to subsequently prove global con-
vergence in Sect. 7.5.

7.2 Global bounds on Kalman gains

Since we will analyze the sequence of covariance matrices
and Kalman gains using contractions in Proposition 10, we
first introduce the following generalization of Banach fixed-
point theorem (BFT).

Lemma 9 Let (X , d) be a non-empty complete metric space,
Tn : X → X , n ∈ N, a sequence of Ln-Lipschitz continuous
contractions with supn Ln ≤ L̄ < 1. Let un be the fixed
point of Tn, as given by BFT, and let limn→∞ un = u∗ ∈ X .
Then, for all x0 ∈ X , the recursive sequence xn := Tn(xn−1)

converges to u∗ as n → ∞.

Proof See Appendix G. ��
In the following, we will assume that T is a multiple of h.

Proposition 10 For constant R ≡ Khp with p ∈ [0,∞], the
unique (attractive) steady states for the following quantities
are

P−,∞
11 := lim

n→∞ P−
11(nh)

= 1

2

(
σ 2h +

√
4σ 2Rh + σ 4h2

)
, (39)

P∞
11 := lim

n→∞ P11(nh)

=
(
σ 2h + √

4σ 2Rh + σ 4h2
)
R

σ 2h + √
4σ 2Rh + σ 4h2 + 2R

, (40)

P−,∞
01 := lim

n→∞ P−
01(nh)

= σ 4h2 + (2R + σ 2h)
√
4σ 2Rh + σ 4h2 + 4Rσ 2h

2(σ 2h + √
4σ 2Rh + σ 4h2)

h,

(41)

P∞
01 := lim

n→∞ P01(nh)

= R
√
4Rσ 2h + σ 4h2

σ 2h + √
4σ 2Rh + σ 4h2

h, (42)

β∞,(0) := lim
n→∞ β(0)(nh)

=
√
4Rσ 2h + σ 4h2

σ 2h + √
4σ 2Rh + σ 4h2

h, and (43)

β∞,(1) := lim
n→∞ β(1)(nh)

= σ 2h + √
4σ 2Rh + σ 4h2

σ 2h + √
4σ 2Rh + σ 4h2 + 2R

. (44)
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If furthermore Assumption 2 holds, then, for all sufficiently
small h > 0,

max
n∈[T /h+1] P

−
11(nh) ≤ Kh1∧

p+1
2 , (45)

max
n∈[T /h+1] P11(nh) ≤ Khp∨ p+1

2 , (46)

max
n∈[T /h+1] ‖P01(nh)‖ ≤ Khp+1, (47)

max
n∈[T /h+1]

∥∥∥β(0)(nh)

∥∥∥ ≤ Kh, and (48)

max
n∈[T /h+1]

∥∥∥1 − β(1)(nh)

∥∥∥ ≤ Kh(p−1)∨0. (49)

All of these bounds are sharp in the sense that they fail for
any higher order in the exponent of h.

Remark 3 The recursions for P(nh) and P−(nh) given by
Eqs. (10) and (15) followadiscrete algebraicRiccati equation
(DARE)—a topic studied inmany related settings (Lancaster
and Rodman 1995). While the asymptotic behavior Eq. (39)
of the completely detectable state X (1) can also be obtained
using classical filtering theory (Anderson and Moore 1979,
Chapter 4.4), the remaining statements of Proposition 10 also
concern the undetectable state X (0) and are, to the best of
our knowledge, not directly obtainable from existing theory
on DAREs or filtering (which makes the following proof
necessary). Note that, in the special case of no measurement
noise (R ≡ 0), Eqs. (43) and (44) yield the equivalence of the
filter in the steady state with the P(EC)1 implementation of
the trapezoidal rule, which was previously shown in Schober
et al. (2019, Proposition 1). For future research, it would be
interesting to examine whether insertion of positive choices
of R into Eqs. (43) and (44) can reproduce known methods
as well.

Proof See Appendix H. ��

7.3 Global bounds on state misalignments

For the following estimates, we restrict the choice of p to be
larger than q = 1.

Assumption 4 The noise model is chosen to be R ≡ Khp,
for p ∈ [q,∞] = [1,∞], where Kh∞ := 0.

Before bounding the added deviation of Ψ from the flow
Φ per step, a global bound on the statemisalignments defined
in Eq. (25) is necessary. The result of the following lemma
is discussed in Appendix D.

Lemma 11 Under Assumptions 1 to 4 and for all sufficiently
small h > 0,

max
n∈[T /h+1] δ

(1)(nh) ≤ Kh. (50)

Proof See Appendix I. ��
See Lemma 11 for a experimental demonstration of Eq. (33).

7.4 Prerequisite for discrete Grönwall inequality

Equipped with the above bounds, we can now prove a bound
on the maximal increment of the numerical error stem-
ming from local truncation errors which is needed to prove
Eq. (56), the prerequisite for the discreteGrönwall inequality.

Lemma 12 Under Assumptions 1 to 4 and for all sufficiently
small h > 0,

max
n∈[T /h+1]

∣∣∣
∣∣∣
∣∣∣Ψ P(nh),h (m(nh)) − Φh

(
m(0)(nh)

)∣∣∣
∣∣∣
∣∣∣
h

≤ Kh2. (51)

Proof By Eq. (19), we have

∣∣∣
∣∣∣
∣∣∣Ψ P(nh),h (m(nh)) − Φh

(
m(0)(nh)

)∣∣∣
∣∣∣
∣∣∣
h

= S1(h) + hS2(h), (52)

with S1(h) and S2(h) defined and bounded by

S1(h) :=
∥∥∥Ψ (0)

h (m(nh)) − Φ
(0)
h

(
m(0)(nh)

)∥∥∥
eq.(28)≤ Δ−(0)((n + 1)h)︸ ︷︷ ︸

eq. (29)≤ Kh2+δ(0)(nh)+hδ(1)(nh)

+
∥∥∥β(0)((n + 1)h)

∥∥∥
︸ ︷︷ ︸

eq. (48)≤ Kh

‖r((n + 1)h)‖︸ ︷︷ ︸
eq. (31)≤ Kh+(1+Kh)δ(1)(nh)

,

(53)

and, analogously,

S2(h) :=
∥∥∥Ψ (1)

h (m(nh)) − Φ
(1)
h

(
m(0)(nh)

)∥∥∥
eq. (28)≤ Δ−(1)((n + 1)h)︸ ︷︷ ︸

eq. (29)≤ Kh+δ(1)(nh)

+
∥∥∥β(1)((n + 1)h)

∥∥∥
︸ ︷︷ ︸

eq. (11)≤ 1

‖r((n + 1)h)‖︸ ︷︷ ︸
eq. (31)≤ Kh+(1+Kh)δ(1)(nh)

(54)

Insertion of Eqs. (53) and (54) into Eq. (52) yields

∣∣∣
∣∣∣
∣∣∣Ψ P(nh),h (m(nh)) − Φh

(
m(0)(nh)

)∣∣∣
∣∣∣
∣∣∣
h

≤ Kh2 + δ(0)(nh) + Khδ(1)(nh), (55)
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which—after recalling δ(0)(nh) = 0 and applying Lemma
11 to δ(1)(nh)—implies Eq. (51). ��

The previous lemma now implies a suitable prerequisite
for a discrete Grönwall inequality.

Lemma 13 Under Assumptions 1 to 4 and for all sufficiently
small h > 0,

|||ε ((n + 1)h)|||h ≤ Kh2 + (1 + Kh)

∥∥∥ε(0)(nh)

∥∥∥. (56)

Proof We observe, by the triangle inequality for the norm
|||·|||h , that

|||ε ((n + 1)h)|||h
=
∣∣∣
∣∣∣
∣∣∣Ψ P(nh),h(m(nh)) − Φh

(
x (0)(nh)

)∣∣∣
∣∣∣
∣∣∣
h

≤
∣∣∣
∣∣∣
∣∣∣Ψ P(nh),h(m(nh)) − Φh

(
m(0)(nh)

)∣∣∣
∣∣∣
∣∣∣
h

+
∣∣∣
∣∣∣
∣∣∣Φh

(
m(0)(nh)

)
− Φh

(
x (0)(nh)

)∣∣∣
∣∣∣
∣∣∣
h
. (57)

The proof is concluded by applying Lemma 12 to the first
and Lemma 3 to the second summand of this bound (as well
as recalling from Eq. (26) that ‖ε(0)(nh)‖ = ‖m(0)(nh) −
x (0)(nh)‖). ��

7.5 Global convergence rates

With the above bounds in place, we can now prove global
convergence rates.

Theorem 14 (Global truncation error) Under Assumptions 1
to 4 and for all sufficiently small h > 0,

max
n∈[T /h+1]

∥∥∥ε(0)(nh)

∥∥∥ ≤ max
n∈[T /h+1] |||ε(nh)|||h ≤ K (T )h,

(58)

where K (T ) > 0 is a constant that depends on T , but not on
h.

Remark 4 Theorem 14 not only implies that the truncation
error ‖ε(0)(nh)‖ on the solution of Eq. (1) has global order
h, but also (by Eq. (19)) that the truncation error ‖ε(1)(nh)‖
on the derivative is uniformly bounded by a constant K inde-
pendent of h. The convergence rate of this theorem is sharp
in the sense that it cannot be improved over all f satisfy-
ing Assumption 1 since it is one order worse than the local
convergence rate implied by Theorem 8.

Proof Using
∥∥ε(0)(nh)

∥∥ ≤ |||ε(nh)|||h (due to Eq. (19)), the
bound Eq. (56), a telescoping sum, and |||ε(0)|||h ≤ Kh2 (by

Assumption 3), we obtain, for all sufficiently small h > 0,
that

|||ε((n + 1)h)|||h − |||ε(nh)|||h
eq. (19)≤ |||ε((n + 1)h)|||h −

∥∥∥ε(0)(nh)

∥∥∥
eq. (56)≤ Kh2 + Kh

∥∥∥ε(0)(nh)

∥∥∥
eq. (19)≤ Kh2 + Kh|||ε(nh)|||h
(tel. sum)= Kh2 + |||ε(0)|||h

+ Kh
n−1∑
l=0

(|||ε((l + 1)h)|||h − |||ε(lh)|||h)

(|||ε(0)|||h≤Kh2)≤ Kh2

+ Kh
n−1∑
l=0

(|||ε((l + 1)h)|||h − |||ε(lh)|||h) .

(59)

Now, by a special version of the discrete Grönwall inequality
(Clark 1987), if zn and gn are sequences of real numbers (with
gn ≥ 0), c ≥ 0 is a nonnegative constant, and if

zn ≤ c +
n−1∑
l=0

gl zl , for all n ∈ N, (60)

then

zn ≤ c
n−1∏
l=0

(1 + gl) ≤ c exp

(
n−1∑
l=0

gl

)
, for all n ∈ N.

Application of this inequality to Eq. (59) with zn :=
|||ε((n + 1)h)|||h − |||ε(nh)|||h , gn := Kh, and c := Kh2

yields

|||ε((n + 1)h)|||h − |||ε(nh)|||h ≤ K (T )h2 exp (nKh) (61)
n≤T /h≤ K (T )h2. (62)

By another telescoping sum argument and |||ε(0)|||h ≤ Kh2,
we obtain

|||ε(nh)|||h (tel. sum)=
n−1∑
l=0

(|||ε((l + 1)h)|||h − |||ε(lh)|||h)

+ |||ε(0)|||h (63)

eq. (62)≤ nK (T )h2 + Kh2 (64)
n≤T /h≤ K (T )h + Kh2 (65)

≤ K (T )h + Kh2, (66)
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for all sufficiently small h > 0. Recalling that
∥∥ε(0)(nh)

∥∥ ≤
|||ε(nh)|||h , by Eq. (19), concludes the proof. ��

8 Calibration of credible intervals

In PN, one way to judge calibration of a Gaussian output
N (m, V ) is to check whether the implied 0.95 credible inter-
val [m − 2

√
V ,m + 2

√
V ] contracts at the same rate as the

convergence rate of the posterior mean to the true quantity of
interest. For the filter, this would mean that the rate of con-
traction of maxn

√
P00(nh) should contract at the same rate

as maxn∈[T /h+1] ‖ε(0)(nh)‖ (recall its rates from Theorem
14). Otherwise, for a higher or lower rate of the interval it
would eventually be under- or overconfident, as h → 0. The
following proposition shows—in light of the sharp bound
Eq. (58) on the global error—that the credible intervals are
well calibrated in this sense if p ∈ [1,∞].

Theorem 15 Under Assumption 2 and for R ≡ Khp, p ∈
[0,∞], as well as sufficiently small h > 0,

max
n∈[T /h+1] P

−
00(nh) ≤ K (T )h(p+1)∧2, and (67)

max
n∈[T /h+1] P00(nh) ≤ K (T )h(p+1)∧2. (68)

Proof See Appendix J. ��

9 Numerical experiments

In this section, we empirically assess the following hypothe-
ses:

(i) theworst-case convergence rates fromTheorem14hold
not only for q = 1 but also for q ∈ {2, 3} (see Sect. 9.1),

(ii) the convergence rates of the credible intervals from
Theorem 15 hold true (see Sect. 9.2), and

(iii) Assumption 4 is necessary to get these convergence
rates (see Sect. 9.3).

The three hypotheses are all supported by the experiments.
These experiments are subsequently discussed in Sect. 9.4.
Appendix D contains an additional experiment illustrating
the convergence rates for the state misalignment δ from
Lemma 11.

9.1 Global convergence rates for q ∈ {1, 2, 3}
We consider the following three test IVPs: Firstly, the fol-
lowing linear ODE

ẋ(t) = Λx(t), ∀t ∈ [0, 10],
with Λ =

(
0 −π

π 0

)
and x(0) = (0, 1)ᵀ , (69)

and has the harmonic oscillator

x(t) = etΛx(0) = (− sin(tπ) cos(tπ)
)ᵀ

(70)

as a solution. Secondly, the logistic equation

ẋ(t) = λ0x(t) (1 − x(t)/λ1) , ∀t ∈ [0, 1.5],
with (λ0, λ1) = (3, 1) and x(0) = 0.1, (71)

which has the logistic curve

x(t) = λ1 exp(λ0t)x(0)

λ1 + x(0)(exp(λ0t) − 1)
. (72)

And, thirdly, the FitzHugh–Nagumo model

(
x1(t)
x2(t)

)
=
(

x1(t) − x1(t)
3 − x2(t)

1
τ

(x1(t) + a − bx2(t)) ,

)
,∀t ∈ [0, 10] (73)

with (a, b, c) = (0.08, 0.07, 1.25) and x(0) = (1, 0) which
does not have a closed-form solution. Its solution, which we
approximate by Euler’s method with a step size of h = 10−6

for the below experiments, is depicted in Fig. 1. We numer-
ically solve these three IVPs with the Gaussian ODE filter
for multiple step sizes h > 0 and with a q-times IBM prior
(i.e., θ = 0 in Eq. (5)) for q ∈ {1, 2, 3} and scale σ = 20.
As a measurement model, we employ the minimal R ≡ 0
and maximal measurement variance R ≡ KRhq (for h ≤ 1)
which are permissible under Assumption 4 whose constant
K > 0 is denoted explicitly by KR in this section. The result-
ing convergence rates of global errors ‖m(T ) − x(T )‖ are
depicted in a work-precision diagram in Fig. 2; cf. Hairer
et al. (1987, Chapter II.1.4) for such diagrams for Runge–
Kutta methods. Now, recall fromTheorem 14 that, for q = 1,
the global truncation error decreases at a rate of at least hq in
the worst case. Figure 2 shows that these convergence rates
of qth order hold true in the considered examples for values
of up to q = 3 if R ≡ 0 and, for values of up to q = 3. In
the case of R ≡ 0, even (q + 1)th order convergence rates
appear to hold true for all three ODEs and q ∈ {1, 2, 3}. Note
that it is more difficult to validate these convergence rates for
q = 4, for all three test problems and small h > 0, since
numerical instability can contaminate the analytical rates.
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0 2 4 6 8 10
−2

−1

0

1

2

Fig. 1 True solution of the FitzHugh–Nagumo model, Eq. (73); x1 in
blue and x2 in orange

9.2 Calibration of credible intervals

To demonstrate the convergence rates of the posterior cred-
ible intervals proved in Theorem 15, we now restrict our
attention to the case of q = 1, that was considered therein.
As in Sect. 9.1, we numerically solve the IVPs eqs. (69) and

(71) with the Gaussian ODE filter with a once IBM prior
with fixed scale σ = 1. We again employ the minimal R ≡ 0
and maximal measurement variance R ≡ KRhq (for h ≤ 1)
which are permissible under Assumption 4 as a measure-
ment model. Figure 3 depicts the resulting convergence rates
in work-precision diagrams. As the parallel standard devia-
tion (std. dev.) and h1 convergence curves show, the credible
intervals asymptotically contract at the rate of h1 guaranteed
by Theorem 15. In all four diagrams of Fig. 3, the global
error shrinks at a faster rate than the width of the credible
intervals. This is unsurprising for R ≡ 0 as we have already
observed convergence rates of hq+1 in this case. While this
effect is less pronounced for R ≡ KRhq , it still results in
underconfidence as h → 0. Remarkably, the shrinking of the
standard deviations seems to be ‘adaptive’ to the numerical
error—bywhich wemean that, as long as the numerical error
hardly decreases (up to 101.75 evaluations of f ), the standard
deviation also stays almost constant, before adopting its h1

convergence asymptotic (from ≈ 102.00).

Fig. 2 Work-precision diagrams
for the Gaussian ODE filter with
q-times IBM prior, for
q ∈ {1, 2, 3}, applied to the
linear Eq. (71), logistic ODE
Eq. (69) and the
FitzHugh–Nagumo model. The
number of function evaluations
(# Evals of f ), which is
inversely proportional to the
step size h, is plotted in color
against the logarithmic global
error at the final time T . The
(dash-)dotted gray lines
visualize idealized convergence
rates of orders one to four. The
left and right columns employ
the minimal R ≡ 0 and maximal
measurement variance
R ≡ KRhq (KR = 1) which are
permissible under Assumption 4
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9.3 Necessity of Assumption 4

Having explored the asymptotic properties under Assump-
tion 4 in Sects. 9.1 and 9.2, we now turn our attention to the
question of whether this assumption is necessary to guaran-
tee the convergence rates from Theorems 14 and 15. This
question is of significance, because Assumption 4 is weaker
than the R ≡ 0 assumption of the previous theoretical results
(i.e., Proposition 1 and Theorem 1 in Schober et al. (2019))
and it is not self-evident that it cannot be further relaxed.
To this end, we numerically solve the logistic ODE Eq. (71)
with the Gaussian ODE filter with a once IBM prior with
fixed scale σ = 1 and measurement variance R ≡ KRh1/2,
which is impermissible under Assumption 4, for increasing
choices of KR from 0.00 × 100 to 1.00 × 107. In the same
way as in Fig. 3, the resulting work-precision diagrams are
plotted in Fig. 4.

In contrast to the lower left diagram in Fig. 3, which
presents the same experiment for R ≡ KRhq (the maxi-
malmeasurement variance permissible underAssumption 4),
the rate of h2, that is again observed for KR = 0 in the
first diagram, is already missed for KR = 1.00 × 100 in
the second diagram. With growing constants, the conver-
gence rates of the actual errors as well as the expected errors
(standard deviation) decrease from diagram to diagram. In
the center diagram with KR = 3.73 × 103, the rates are
already slightly worse than the h1 convergence rates guaran-
teed by Theorems 14 and 15 under Assumption 4, whereas,
for KR = 5.00 × 103, the convergence rates in the lower
left plot of Fig. 3 were still significantly better than h1. For
the greater constants up to KR = 1.00 × 107, the rates even
become significantly lower. Notably, as in the lower right
diagram of Fig. 3, the slope of the standard deviation curve
matches the slope of the global error curve, as can be seen best
in the lower right subfigure—thereby asymptotically exhibit-
ing neither over- nor underconfidence. These experiments
suggest that the convergence rates from Theorems 14 and
15 do not hold in general for R ≡ KRh1/2. Hence, it seems
likely that Assumption 4 is indeed necessary for our results
and cannot be further relaxed without lowering the implied
worst-case convergence rates.

9.4 Discussion of experiments

Before proceeding to our overall conclusions, we close this
section with a comprehensive discussion of the above exper-
iments. First and foremost, the experiments in Sect. 9.1
suggest that Theorem 14, the main result of this paper,
might be generalizable to q ∈ {2, 3} and potentially even
higher q ∈ N—although unresolved issues with numerical
instability for small step sizes prevent us from confidently
asserting that these theoretical results would hold in prac-
tice for q ≥ 4. Moreover, we demonstrated the contraction

rates of the posterior credible intervals from Theorem 15
and evidence for the necessity of Assumption 4 in Sects. 9.3
and 9.2. The asymptotics revealed by these experiments
can be divided by the employed measurement model into
three cases: the zero-noise case R ≡ 0, the permissible
nonzero case R ≤ KRhq (under Assumption 4) and the non-
permissible case R � KRhq . First, if R ≡ 0, the diagrams
in the left column of Fig. 2 reaffirm the hq+1 convergence
reported for q ∈ {1, 2} in Schober et al. (2019, Figure 4)
and extend them to q = 3 (see Sect. 10 for a discussion on
why we expect the above global convergence proofs to be
extensible to q ≥ 2)

The contraction rates of the credible intervals, for q = 1,
appear to be asymptotically underconfident in this case as
they contract faster than the error. This underconfidence
is not surprising in so far as the posterior standard devi-
ation is a worst-case bound for systems modeled by the
prior, while the convergence proofs require smoothness of
the solution of one order higher than sample paths from
the prior. This is a typical result that highlights an aspect
known to, but on the margins of classic analysis: The class
of problems for which the algorithm converges is rougher
than the class on which convergence order proofs operate.
How to remedy such overly cautious UQ remains an open
research question in PN as well as classical numerical anal-
ysis.

Secondly, in the case of R > 0, as permissible under
Assumption 4, the convergence rates are slightly reduced
compared to the case R ≡ 0, exhibiting convergence between
hq and hq+1. The asymptotic underconfidence of the credible
intervals, however, is either reduced or completely removed
as depicted in the right column of Fig. 3. Thirdly, in the final
case of an impermissibly large R > 0, the hq convergence
speed guaranteed by Theorem 14 indeed does not necessarily
hold anymore—as depicted in Fig. 4. Note, however, that
even then the convergence rate is only slightly worse than
hq . The asymptotic UQmatches the observed global error in
this case, as the parallel standard deviation and the h1 curves
in all but the upper left R ≡ 0 diagram show.

Overall, the experiments suggest that, in absence of statis-
tical noise on f , a zero-variance measurement model yields
the best convergence rates of the posterior mean. Maybe this
was expected as, in this case, R only models the inaccu-
racy from the truncation error, that ideally should be treated
adaptively (Kersting andHennig 2016, Section 2.2). The con-
vergence rates of adaptive noisemodels should be assessed in
future work. As the observed convergence rates in practice
sometimes outperform the proved worst-case convergence
rates, we believe that an average-case analysis of the filter
in the spirit of Ritter (2000) may shed more light upon the
expected practical performance. Furthermore, it appears that
the UQ becomes asymptotically accurate as well as adaptive
to the true numerical error as soon as the R > 0 is large
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Fig. 3 Work-precision diagrams
for the Gaussian ODE filter with
q-times IBM prior, for q = 1,
applied to the linear Eq. (69)
and logistic ODE Eq. (71) in the
upper and lower row,
respectively. The number of
function evaluations (# Evals of
f ), which is inversely
proportional to the step size h, is
plotted in color against the
logarithmic global error at the
final time T . The (dash-)dotted
gray lines visualize idealized
convergence rates of orders one
and two. The dashed blue lines
show the posterior standard
deviations calculated by the
filter. The left and right
columns, respectively, employ
the minimal R ≡ 0 and maximal
measurement variance
R ≡ KRhq (KR = 5.00 × 103)
which are permissible under
Assumption 4
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Fig. 4 Work-precision diagrams for the Gaussian ODE filter with q-
times IBM prior, for q = 1 and R ≡ KRh1/2, applied to the logistic
ODE Eq. (71) for increasing values of KR . The number of function
evaluations (# Evals of f ), which is inversely proportional to the step

size h, is plotted in blue against the logarithmic global error at the final
time T . The (dash-)dotted gray lines visualize idealized convergence
rates of orders one and two. The dashed blue lines show the posterior
standard deviations calculated by the filter
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enough. This reinforces our hope that these algorithms will
prove useful for IVPs when f is estimated itself (Hennig
et al. 2015, Section 3(d)), thereby introducing a R > 0.

10 Conclusions

We presented a worst-case convergence rate analysis of
the Gaussian ODE filter, comprising both local and global
convergence rates. While local convergence rates of hq+1

were shown to hold for all q ∈ N, IBM and IOUP prior
as well as any noise model R ≥ 0, our global conver-
gence results is restricted to the case of q = 1, IBM
prior and fixed noise model R ≡ Khp with p ∈ [1,∞].
While a restriction of the noise model seems inevitable,
we believe that the other two restrictions can be lifted:
In light of Theorem 8, global convergence rates for the
IOUP prior might only require an additional assumption
that ensures that all possible data sequences {y(nh); n =
1, . . . , T /h} (and thereby all possible qth-state sequences
{m(q)(nh); n = 0, . . . , T /h}) remain uniformly bounded
(see discussion in Remark 2). For the case of q ≥ 2, it
seems plausible that a proof analogous to the presented
one would already yield global convergence rates of order
hq ,3 as suggested for q ∈ {2, 3} by the experiments in
Sect. 9.1.

The orders of the predictive credible intervals can also
help to intuitively explain the threshold of p = 1 (or maybe
more generally: p = q; see Fig. 2) below which the per-
formance of the filter is not as good, due to Eqs. (45)–(49):
According to Kersting and Hennig (2016, Equation (20)),
the ‘true’ (push-forward) variance on y(t) given the predic-
tive distribution N (m−(t), P−(t)) is equal to the integral
of f f ᵀ with respect to N (m−(t), P−(t)), whose maximum

over all time steps, byEq. (67), has orderO(h
p+1
2 ∧1) if f f ᵀ is

globally Lipschitz—since P−(t) enters the argument of the
integrand f f ᵀ, after a change of variable, only under a square
root. Hence, the added ‘statistical’ noise R on the evalua-
tion of f is of lower order than the accumulated ‘numerical’
variance P−(t) (thereby preventing numerical convergence)
if and only if p < 1. Maybe this, in the spirit of Hen-
nig et al. (2015, Subsection 3(d)), can serve as a criterion
for vector fields f that are too roughly approximated for
a numerical solver to output a trustworthy result, even as
h → 0.

Furthermore, the competitive practical performance of
the filter, as numerically demonstrated in Schober et al.
(2019, Section 5), might only be completely captured by an

3 According to Loscalzo and Talbot (1967), the filter might, however,
suffer from numerical instability for high choices of q. (See Schober
et al. (2019, Section 3.1) for an explanation of how such results on
spline-based methods concern the ODE filter.)

average-case analysis in the sense of Ritter (2000), where
the average error is computed with respect to some distribu-
tion p( f ), i.e., over a distribution of ODEs. To comprehend
this idea, recall that the posterior filtering mean is the Bayes
estimatorwithminimummean squared error in linear dynam-
ical systems with Gauss–Markov prior (as defined by the
SDE Eq. (2)), i.e., when the data is not evaluations of f
but real i.i.d. measurements, as well as in the special case
of ẋ(t) = f (t), when the IVP simplifies to a quadrature
problem—see Solak et al. (2003) and O’Hagan (1991, Sec-
tion 2.2), respectively. In fact, the entire purpose of the update
step is to correct the prediction in the (on average) correct
direction, while a worst-case analysis must assume that it
corrects in the worst possible direction in every step—which
we execute by the application of the triangle inequality in
Eq. (28) resulting in a worst-case upper bound that is the
sum of the worst-case errors from prediction and update
step. An analysis of the probabilities of ‘good’ vs. ‘bad’
updates might therefore pave the way for such an average-
case analysis in the setting of this paper. Since, in practice,
truncation errors of ODE solvers tend to be significantly
smaller than the worst case—as mirrored by the experiments
in Section 9—such an analysis might be useful for applica-
tions.

Lastly, we hope that the presented convergence analysis
can lay the foundations for similar results for the novel ODE
filters (extended KF, unscented KF, particle filter) introduced
in Tronarp et al. (2019), and can advance the research on
uncertainty-aware likelihoods for inverse problems by ODE
filtering (Kersting et al. 2020, Section 3).
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A Derivation of A andQ

As derived in Särkkä (2006, Section 2.2.6) the solution of the
SDE Eq. (2), i.e.,

dX(t) =

⎛
⎜⎜⎜⎝

dX (0)(t)
.
.
.

dX (q−1)(t)
dX (q)(t)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
.
.
.

. . .
. . . 0

.

.

.
. . . 1

c0 . . . . . . cq

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=:F

⎛
⎜⎜⎜⎝

X (0)(t)
.
.
.

X (q−1)(t)
X (q)(t)

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=X(t)

dt +

⎛
⎜⎜⎜⎝

0
.
.
.

0
σ

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=:L

dB(t),

(74)

where we omitted the index j for simplicity, is a Gauss–
Markov process with meanm(t) and covariance matrix P(t)
given by

m(t) = A(t)m(0), P(t) = A(t)P(0)A(t)ᵀ + Q(t),
(75)

where the matrices A, Q ∈ R
(q+1)×(q+1) are explicitly

defined by

A(t) = exp(t F), (76)

Q(t) :=
∫ t

0
exp(F(t − τ))LLᵀ exp(F(t − τ))ᵀ dτ. (77)

Parts of the following calculation can be found in Magnani
et al. (2017). If we choose c0, . . . , cq−1 = 0 and cq = −θ

(for θ ≥ 0) in Eq. (74) the unique strong solution of the SDE
is a q-times IOUP, if θ > 0, and a q-times IBM, if θ = 0; see,
e.g., Karatzas and Shreve (1991, Chapter 5: Example 6.8).
By Eq. (77) and

(
(t F)k

)
i, j = tk

[
I j−i=k + (−θ)k+i−q

I{ j=q, i+k≥q}
]
, (78)

it follows that

A(t)i j =
(∑∞

k=0
(t F)k

k!
)
i, j

=
{

Ii≤ j
t j−i

( j−i)! , if j = q,

1
(−θ)q−i

∑∞
k=q−i

(−θ t)k

k! , if j = q,

=
{

Ii≤ j
t j−i

( j−i)! , if j = q,

tq−i

(q−i)! − θ
∑∞

k=q+1−i
(−θ)k+i−q−1tk

k! , if j = q.

(79)

Analogously, it follows that

exp(F(t − τ))

=
{

Ii≤ j
(t−τ) j−i

( j−i)! , if j = q,

(t−τ)q−i

(q−i)! − θ
∑∞

k=q+1−i
(−θ)k+i−q−1(t−τ)k

k! , if j = q,
.

(80)

If we insert Eq. (80) into Eq. (77), then we obtain, by the
sparsity of L , that

Q(t)i j

= σ 2

(−θ)2q−i− j

∫ t

0

⎛
⎝

∞∑
k=q−i

(−θτ)k

k!

⎞
⎠
⎛
⎝

∞∑
l=q− j

(−θτ)l

l!

⎞
⎠ dτ,

(81)

and the dominated convergence theorem (with dominating
function τ �→ e2θτ ) yields

Q(t)i j = σ 2

(−θ)2q−i− j

∞∑
k=q−i

∞∑
l=q− j

∫ t

0

(−θτ)k+l

k!l! dτ

= σ 2

(−θ)2q−i− j

∞∑
k=q−i

∞∑
l=q− j

(−θ)k+l t k+l+1

(k + 1 + l)k!l! .

(82)

Now, by extracting the first term and noticing that the rest
of the series is in Θ(t2q+2−i− j ), it follows that

Q(t)i j = σ 2 t2q+1−i− j

(2q + 1 − i − j)(q − i)!(q − j)!
+ Θ

(
t2q+2−i− j

)
. (83)

B Extension to x with dependent dimensions

The algorithm in Sect. 2.2 employs a prior X with inde-

pendent dimensions X j =
(
X (0)

j , . . . , X (q)
j

)ᵀ
, j ∈ [d], by
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Eq. (2).While this constitutes a loss of generality for our new
theoretical results, which do not immediately carry over to
the case of x with dependent dimensions, it is not a restriction
to the class of models the algorithm can employ. To construct
such a prior X , we first stack its dimensions into the random
vector X = (Xᵀ

0 , . . . , Xᵀ
d−1)

ᵀ, choose symmetric positive
semi-definite matrices Kx , Kε ∈ R

d×d , and define, using
the Kronecker product ⊗, its law according to the SDE

dX(t) = [Kx ⊗ F] X(t) dt + [Kε ⊗ L] dB(t), (84)

with initial condition X(0) ∼ N (m(0), P(0)), meanm(0) ∈
R
d(q+1) and covariance matrix P(0) ∈ R

d(q+1)×d(q+1), as
well as an underlying d-dimensional Brownian motion B
(independent of X(0)). Now, insertion of Kx ⊗F and Kε ⊗L
for F and L into Eq. (77) yields new predictive matrices Ã
and Q̃. If we now choose Kx = Id and Kε = Id , substitute
Ã and Q̃ for A and Q in Eqs. (9) and (10), and use the
d(q + 1)-dimensional GP X from Eq. (84) with m(0) ∈
R
d(q+1) and P(0) ∈ R

d(q+1)×d(q+1) as a prior, we have
equivalently defined the version of Gaussian ODE filtering
with independent dimensions from Sect. 2.2. If we, however,
choose different symmetric positive semi-definite matrices
for Kx and Kε, we introduce, via Ã and Q̃, a correlation in
the development of the solution dimensions (x0, . . . , xd−1)

ᵀ

as well as the error dimensions (ε0, . . . , εd)
ᵀ, respectively.

Note that, while Kε plays a similar role asCh in Conrad et al.
(2017, Assumption 1) in correlating the numerical errors,
the matrix Kx additionally introduces a correlation of the
numerical estimates, that ism, along the time axis. Evenmore
flexible correlationmodels (over all modeled derivatives) can
be employed by inserting arbitrary matrices (of the same
dimensionality) for Kx ⊗ F and Kε ⊗ L in Eq. (84), but
such models seem hard to interpret. For future research, it
would be interesting to examine whether such GP models
with dependent dimensions are useful in practice. There are
first publications (Xiaoyue et al. 2018; Gessner et al. 2019)
on this topic for integrals, but not yet for ODEs.

C Illustrative example

To illustrate the algorithm defined in Sect. 2.2, we apply it to
a special case of the Riccati equation (Davis 1962, p. 73)

dx

dt
(t) = f (x(t)) = − (x(t))3

2
, x(0) = 1, (85)

(
solution: x(t) = (t + 1)−1/2

)
, (86)

with step size h = 0.1, measurement noise R = 0.0 (for
simplicity) as well as prior hyperparameters q = 1, σ 2 =
10.0 and ci = 0 for all i ∈ [q + 1] (recall Eq. (2)), i.e., with

a 1-times integrated Brownian motion prior whose drift and
diffusion matrices are, by Eq. (8), given by

A(h) =
(
1 h
0 1

)
, Q(h) =

(
1/300 1/20
1/20 1

)
. (87)

As the ODE Eq. (85) is one-dimensional (i.e., d = 1), the
dimension index j ∈ [d] is omitted in this section. Since
the initial value and derivative are certain at x(0) = 1 and
ẋ(0) = f (x0) = −1/2, our prior GP is initialized with
a Dirac distribution (i.e., X(0) = (X (0)(0), X (1)(0))ᵀ ∼
δ(x0, f (x0)) = δ(1,−1/2)). Therefore, m(0) = (1,−1/2)ᵀ and
P(0) = 0 ∈ R

2×2 for the initial filtering mean and covari-
ancematrix.Now, theGaussianODEFilter computes the first
integration step by executing the prediction step Eqs. (9) and
(10)

m−(h) = A(h)m−(0)

=
(
m(0)(0) + hm(1)(0),m(1)(0)

)ᵀ

= (19/20,−1/2)ᵀ , and (88)

P−(h) = 0 + Q(h) =
(
1/300 1/20
1/20 1

)
. (89)

Note that, for all i ∈ [q + 1], m−,(i)(h) is obtained by
a (q − i)th-order Taylor expansion of the state m(0) =
(x0, f (x0))ᵀ ∈ R

q+1. Based on this prediction, the data is
then generated by

y(h) = f
(
m−,(0)(h)

)
eq. (88)= f (19/20)

eq. (85)= −6859/16000 (90)

with variance R = 0.0. In the subsequent update step Eqs. (9)
and (11) to (13), a Bayesian conditioning of the predictive
distribution Eqs. (88) and (89) on this data is executed:

β(h) =
(
β(0)(h), β(1)(h)

)ᵀ

=
(

P−(h)01

(P−(h))11 + R
,

P−(h)11

(P−(h))11 + R

)ᵀ

eq. (89)=
(

1

20
, 1

)ᵀ
, (91)

r(h) = y(h) − m−,(1)(h)

eqs. (88),(90)= −6859/16000 + 1/2

= 1141/16000, (92)

m(h)
eq. (9)=

(
m−,(0)(h) + β(0)(h)r(h)

m−,(1)(h) + β(1)(h)r(h)

)

eqs. (88),(91),(92)=
(
305141/320000
−6859/16000

)
, (93)
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Fig. 5 Work-precision diagram plotting the number of function evalu-
ations (# Evals of f ) against the final state misalignment δ(1)(T ) on the
Riccati Eq. (85); cf. Fig. 2

which concludes the step from 0 to h. The next step h → 2h
starts with computingm−,(i)(2h) by a (q− i)th-order Taylor
expansionof the i th statem(i)(h), for all i ∈ [q+1].Note that,
now, there is a nonzero state misalignment (recall Eq. (25)):

δ(1)(h)
eq.(25)=

∣∣∣m(1)(h) − f
(
m(0)(h)

)∣∣∣ (94)

=
∣∣∣∣∣−

6859

16000
− 1

2

(
305141

320000

)3
∣∣∣∣∣ (95)

≈ 0.00485 > 0 (96)

which confirms the exposition on the possibility of δ(i) > 0
from Sect. 4. Note that δ tends to increase with R; e.g., if
R = 1.0 in the above example, then δ(1)(h) ≈ 0.03324.

D Experiment: global convergence of state
misalignments ı

Figure 5 depicts the global convergence of the state misalign-
ment δ(1)(T ) in the above example Eq. (85), as detailed in
Appendix C, for q ∈ {1, 2, 3}. The plotting is analogous
to Fig. 2. The resulting convergence rates of hq+1 confirm
Lemma 11 and suggest that it may also be generalizable to
q ∈ {2, 3, . . . }.

E Proof of Eq. (23)

We prove the stronger statement

Φ
(i+1)
t (a) = f (i)

(
Φ

(0)
t (a)

)
, (97)

from which Eq. (23) follows by inserting t = 0 and
Φ

(0)
0 (a) = a. Hence, it remains to show Eq. (97).

Proof (of Eq. (97)) By induction over i ∈ {0, . . . , q}. The
base case (i = 0) is obtained using the fundamental theo-

rem of calculus and f (1) = f : Φ
(1)
t (a) = f

(
Φ

(0)
t (a)

)
=

f (1)
(
Φ

(0)
t (a)

)
. For the inductive step (i − 1) → i , we con-

clude (using the inductive hypothesis (IH), the chain rule
(CR), the base case (BC) and f (i) = ∇x f (i−1) · f ) that

Φ
(i+1)
t (a) = d

dt
Φ

(i)
t (a)

(IH)= d

dt
f (i−1)

(
Φ

(0)
t (a)

)

(CR)= ∇x f
(i−1)

(
Φ

(0)
t (a)

) d

dt
Φ

(0)
t (a)

= ∇x f
(i−1)

(
Φ

(0)
t (a)

)
· f

(
Φ

(0)
t (a)

)

=
[
∇x f

(i−1) · f
] (

Φ
(0)
t (a)

)

(BC)= f (i)
(
Φ

(0)
t (a)

)
. (98)

��

F Proof of Lemma 5

Proof Again, w.l.o.g. d = 1. Recall that, by Eq. (13), r is
implied by the values of m−,(0) and m−,(1). By insertion of

m−,(i)((n + 1)h)

=
q∑

k=i

hk−i

(k − i)!m
(k)(nh) + K θ

∣∣∣m(q)(nh)

∣∣∣ hq+1−i (99)

(due to Eqs. (8) and (14)) into the definition Eq. (13) of
r((n+1)h), we obtain the following equality which we then
bound by repeated application of the triangle inequality:

|r((n + 1)h)|

=
∣∣∣∣ f

( q∑
k=0

hk

k! m
(k)(nh) + K θ

∣∣∣m(q)(nh)

∣∣∣ hq+1

)

−
( q∑
k=1

hk−1

(k − 1)!m
(k)(nh) + K θ

∣∣∣m(q)(nh)

∣∣∣ hq
) ∣∣∣∣

≤
∣∣∣∣ f

( q∑
k=0

hk

k! m
(k)(nh) + K θ

∣∣∣m(q)(nh)

∣∣∣ hq+1

)

−
( q∑
k=1

hk−1

(k − 1)!m
(k)(nh)

) ∣∣∣∣ + K θ

∣∣∣m(q)(nh)

∣∣∣ hq

eq. (25)≤ I1(h) + I2(h) + I3(h)

+
q∑

k=1

hk−1

(k − 1)!δ
(k)(nh)+K θ

∣∣∣m(q)(nh)

∣∣∣ hq , (100)
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where I1, I2, and I3 are defined and bounded as follows,
using Assumption 1 and Lemma 1:

I1(h) :=
∣∣∣∣ f

( q∑
k=0

hk

k! m
(k)(nh) + K θ

∣∣∣m(q)(nh)

∣∣∣ hq+1

)

− f

( q∑
k=0

hk

k! Φ
(k)
0

(
m(0)(nh)

)) ∣∣∣∣

≤ L
q∑

k=0

hk

k! δ(k)(nh) + LK θ

∣∣∣m(q)(nh)

∣∣∣ hq+1, (101)

I2(h) :=
∣∣∣ f

( q∑
k=0

hk

k! Φ
(k)
0

(
m(0)(nh)

))
− f

(
Φ

(0)
h

(
m(0)(nh)

)) ∣∣∣

≤ L

∣∣∣∣∣
q∑

k=0

hk

k! Φ
(k)
0

(
m(0)(nh)

)
− Φ

(0)
h

(
m(0)(nh)

)∣∣∣∣∣
eq. (16)≤ Khq+1, (102)

and

I3(h) :=
∣∣∣∣∣Φ

(1)
h

(
m(0)(nh)

)
−

q∑
k=1

hk−1

(k − 1)!Φ
(k)
0

(
m(0)(nh)

)∣∣∣∣∣
eq. (16)≤ Khq . (103)

Inserting Eqs. (101), (102), and (103) into Eq. (100) (and
recalling δ(0) = 0) yields Eq. (31). ��

G Proof of Lemma 9

Proof Let ũ0 = u∗ and ũn = Tn(ũn−1), for n ∈ N. Then,

d(u∗, xn) ≤ d(u∗, un)︸ ︷︷ ︸
→0

+ d(un, ũn)︸ ︷︷ ︸
=:an

+ d(ũn, xn)︸ ︷︷ ︸
→0

, (104)

where the last summand goes to zero by

d(ũn, xn) = d
(
(Tn ◦ · · · ◦ T1)(u

∗), (Tn ◦ · · · ◦ T1)(x0)
)

≤ L̄nd(u∗, x0) → 0, as n → ∞.

Hence, it remains to show that limn→∞ an = 0. The L̄-
Lipschitz continuity of Tn and the triangle inequality yield
that

an = d(Tn(un), Tn(ũn−1))

≤ L̄
[
d(un, un−1) + d(un−1, ũn−1)

]

= L̄an−1 + bn−1, (105)

where bn := L̄d(un+1, un) → 0. Now, for all m ∈ N, let
a(m)
0 := a0 and a

(m)
n := L̄a(m)

n−1 + bm . By BFT, limn→∞ a(m)
n

= bm/(1−L̄). Since, for allm ∈ N,an ≤ a(m)
n for sufficiently

large n, it follows that

0 ≤ lim sup
n→∞

an ≤ lim
n→∞ a(m)

n = bm
1 − L̄

, ∀m ∈ N. (106)

Since the convergent sequence un is in particular a Cauchy
sequence, limm→∞ bm = 0 and, hence, 0 ≤ limn→∞ an =
lim supn→∞ an ≤ 0. Hence, limn→∞ an = 0. ��

H Proof of Proposition 10

Proof Again, w.l.o.g. d = 1. We prove the claims in the
following order: Eqs. (39), (45), (40), (46), (41), (43),
(44), (42), (49), (48), (47). The sharpness of these
bounds is shown, directly after they are proved. As a start,
for Eq. (39), we show that P−,∞

11 is indeed the unique
fixed point of the recursion for {P−

11(nh)}n by checking

that, if P−
11(nh) = 1

2

(
σ 2h + √

4σ 2Rh + σ 4h2
)
, then also

P−
11((n + 1)h) = 1

2

(
σ 2h + √

4σ 2Rh + σ 4h2
)
:

P11((nh))
eq. (15)= P−

11(nh)

(
1 − P−

11(nh)

P−
11(nh) + R

)

=
(
σ 2h + √

4σ 2Rh + σ 4h2
)
R

σ 2h + √
4σ 2Rh + σ 4h2 + 2R

, and

(107)

P−
11((n + 1)h) = P11(nh) + σ 2h

eq. (107)= 1

2

(
σ 2h +

√
4σ 2Rh + σ 4h2

)

= P−
11(nh). (108)

After combining Eq. (107) and Eq. (108), the recursion for
P−
11 is given by

P−
11((n + 1)h) =

(
R

P−
11(nh) + R

)

︸ ︷︷ ︸
=:α(nh)

P−
11(nh) + σ 2h (109)

=: T̃ (
P−
11(nh)

)
. (110)

Since R and P−
11(nh) are positive variances, we know that

infn∈[T /h+1] P−
11(nh) ≥ σ 2h, andhencemaxn∈[T /h+1] α(nh)

≤ R/(σ 2h + R) < 1. Hence, T̃ is a contraction. By BFT,
P−,∞
11 is the unique (attractive) fixed point of T̃ , and the

sequence {|P−
11(nh) − P−,∞

11 |}n is strictly decreasing. Since,
by Eqs. (15), (6) with θ = 0 and Assumption 2,

P−
11(h) = P11(0) + σ 2h ≤ Kh, (111)
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we can, using the reverse triangle inequality and the (byBFT)
strictly decreasing sequence {|P−

11(nh) − P−,∞
11 |}n , derive

Eq. (45):

∣∣P−
11(nh)

∣∣ ≤
∣∣∣P−

11(nh) − P−,∞
11

∣∣∣
︸ ︷︷ ︸

≤
∣∣∣P−

11(h)−P−,∞
11

∣∣∣

+
∣∣∣P−,∞

11

∣∣∣ (112)

≤ P−
11(h)︸ ︷︷ ︸
≤Kh

+ 2P−,∞
11︸ ︷︷ ︸

≤Kh1∧
p+1
2 , by eq.(39)

(113)

≤ Kh1∧
p+1
2 , (114)

which is sharp because it is estimated against the maximum
of the initial P−

11 and the steady state that can both be attained.
Recall that, by Eq. (107), P11(nh) depends continuously
on P−

11(nh), and, hence, inserting Eq. (39) into Eq. (107)
yields Eq. (40)—the necessary computation was already per-
formed in Eq. (107). Since P11(nh) monotonically increases
in P−

11(nh) (because the derivative of P11(nh) with respect
to P−

11(nh) is non-negative for all P−
11(nh) due to R ≥ 0; see

Eq. (107)), we obtain Eq. (46):

P11(nh)
eq. (107)≤

(
maxn P

−
11(nh)

)
R

maxn P
−
11(nh) + R

(115)

R∼h p

≤ Kh1∧
p+1
2 Khp

Kh1∧
p+1
2 + Khp

(116)

≤ Kh(p+1)∧ 3p+1
2

Kh1∧p
(117)

≤
{
Kh

p+1
2 , if p ≤ 1,

Khp, if p ≥ 1,
(118)

≤ Khp∨ p+1
2 , (119)

which is sharp because the steady state Eq. (45) has these
rates. For Eq. (41), we again first construct the following
recursion (from Eq. (10), Eqs. (15) and (6) with θ = 0)

P−
01((n + 1)h) = R

P−
11(nh) + R︸ ︷︷ ︸

=α(nh)

P−
01 (nh)

+
(
P11(nh) + σ 2h

2

)
h

︸ ︷︷ ︸
=:g(nh)

(120)

= Tn
(
P−
01(nh)

)
, (121)

where the α(nh)-Lipschitz continuous contractions Tn sat-
isfy the prerequisites of Lemma 9, since supn α(nh) ≤
R/(σ 2h + R) < 1 (due to infn P

−
11(nh) ≥ σ 2h) and the

sequence of fixed points (1− α(nh))−1g(nh) of Tn (defined

by BFT) converges. Both α(nh) and g(nh) depend contin-
uously on P−

11(nh). Hence, insertion of the limits Eqs. (39)
and (40) yield

lim
n→∞ (1 − α(nh))−1 = σ 2h + √

4σ 2Rh + σ 4h2 + 2R

σ 2h + √
4σ 2Rh + σ 4h2

,

(122)

and

lim
n→∞ g(nh)

= (σ 4h2 + (2R + σ 2h)
√
4σ 2Rh + σ 4h2 + 4Rσ 2h)

2(σ 2h + √
4σ 2Rh + σ 4h2 + 2R)

h.

(123)

Now, application of Lemma 9 implies convergence of the
recursion Eq. (121) to the product of these two limits
Eqs. (122) and (123), i.e., Eq. (41):

lim
n→∞ P−

01(nh)

= lim
n→∞ (1 − α(nh))−1 × lim

n→∞ g(nh)

= σ 4h2 + (2R + σ 2h)
√
4σ 2Rh + σ 4h2 + 4Rσ 2h

2(σ 2h + √
4σ 2Rh + σ 4h2)

h.

ForEqs. (43) and (44),we can simply insertEqs. (39) and (41)
for P−

01(nh) and P−
11(nh), respectively, into their definition

Eq. (11):

β∞,(0) eq. (11)= P−,∞
01

P−,∞
11 + R

(124)

eqs. (39) and (41)=
√
4Rσ 2h + σ 4h2

σ 2h + √
4Rσ 2h + σ 4h2

h, (125)

and

β∞,(1) eqs. (11) and (39)= σ 2h + √
4σ 2Rh + σ 4h2

σ 2h + √
4σ 2Rh + σ 4h2 + 2R

.

(126)

These steady states Eqs. (43) and (44) are again unique and
attractive because β(0)(nh) and β(1)(nh) depend continu-
ously on P−

11(nh) and P−
01(nh). Next, recall that

P01(nh)
eq. (15)=

(
1 − P−

11(nh)

P−
11(nh) + R

)
P−
01(nh) (127)

= R
P−
01(nh)

P−
11(nh) + R

eq. (11)= Rβ(0)(nh), (128)

which, since P01(nh) depends continuously on β(0)(nh),
implies the unique (attractive) fixed point P∞

01 (nh) =
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Rβ∞,(0), which yields Eq. (42). Now, exploiting Eq. (11)
and infn P

−
11(nh) ≥ σ 2h yields Eq. (49):

∣∣∣1 − β(1)(nh)

∣∣∣ = R

P−
11(nh) + R

(129)

≤ R

σ 2h + R
(130)

R∼h p= Khp

Kh + Khp
(131)

≤ Kh(p−1)∨0, (132)

which is sharp because infn P
−
11(nh) ≥ Kh is sharp (due to

Eqs. (10) and (6)). And since, for β(0), maximizing over both
P−
01(nh) and P−

11(nh) at the same time does not yield a sharp
bound (while above in Eqs. (129) and (119) themaximization
over just one quantity does), we prove Eq. (48) by inductively
showing that

∣∣∣β(0)(nh)

∣∣∣ ≤ β̂h, ∀n ∈ N, (133)

with β̂ :=
(
2K0

σ 2 + 1

2

)
∨ 1 > 0, (134)

where K0 > 0 is the constant from Assumption 2. The con-
stant β̂ is independent of n and a possible choice for K in
Eq. (48).

The base case (n = 1) follows from

∣∣∣β(0)(h)

∣∣∣ =
∣∣P−

01(h)
∣∣

P−
11(h) + R

(135)

eq. (10)≤ |P01(0)| + hP11(0) + σ 2

2 h2

σ 2h
(136)

Ass. 2≤
(
2K0

σ 2 + 1

2

)
h (137)

≤ β̂h. (138)

In the following inductive step (n−1 → n) we, to avoid nota-
tional clutter, simply denote P−((n − 1)h)i j by P−

i j which
leaves us—by Eq. (11), (10) and (15)—with the following
term to bound:

∣∣∣β(0)(nh)

∣∣∣ =
∣∣P−

01(nh)
∣∣

P−
11(nh) + R

(139)

≤
∣∣P−

01

∣∣α(nh) + hP−
11α(nh) + σ 2

2 h2

P−
11α(nh) + σ 2h + R

, (140)

with α(nh) =
(
1 − P−

11
P−
11+R

)
= R

P−
11+R

. Application of the

inductive hypothesis (i.e., P−
01 ≤ β̂(P−

11 + R)) yields, after
some rearrangements, that

∣∣∣β(0)(nh)

∣∣∣ ≤ β̂
(
P−
11 + R

)
hα(nh) + hP−

11α(nh) + σ 2

2 h2

P−
11α(nh) + σ 2h + R

= 2β̂P−
11R + σ 2h

(
P−
11 + R

) + 2P−
11R + 2β̂R2

2
(
P−
11R + σ 2h

(
P−
11 + R

) + P−
11R + R2

) h

= 2(β̂ + 1)Λ1 + Λ2 + 2β̂Λ3

4Λ1 + 2Λ2 + 2Λ3
h, (141)

with Λ1 := 2P−
11R, Λ2 := σ 2h

(
P−
11 + R

)
, and Λ3 := R2.

Now, application of β̂ ≥ 1 yields |β(0)(nh)| ≤ β̂h, which
completes the inductive proof of Eq. (133). This implies
Eq. (48), which is sharp because it is the order of β(0) in
the steady state Eq. (43), for all p ∈ [0,∞]. Now, inser-
tion of Eq. (48) into Eq. (127) immediately yields Eq. (47),
which—by Eq. (127)—inherits the sharpness of Eq. (48). ��

I Proof of Lemma 11

Proof For all n ∈ [T /h + 1], we can estimate

δ(1)(nh) =
∥∥∥m(1) (nh) − f

(
m(0) (nh)

)∥∥∥ (142)

=
∥∥∥Ψ (1)

h (m((n − 1)h) − f
(
m(0) (nh)

)∥∥∥ (143)

≤
∥∥∥Ψ (1)

h (m((n − 1)h) − f
(
m−,(0) (nh)

)∥∥∥
︸ ︷︷ ︸

=:J1(h)

+
∥∥∥ f

(
m−,(0) (nh)

)
− f

(
m(0) (nh)

)∥∥∥
︸ ︷︷ ︸

:=J2(h)

, (144)

bound J1, using the definition Eq. (14) of Ψ
(1)
h (m((n − 1)h)

as well as the definition Eq. (13) of r(nh), by

J1(h) =
∥∥∥∥m−,(1)(nh) − f

(
m−,(0)(nh)

)
(145)

+ β(1)(nh)
[
f
(
m−,(0)(nh)

)
− m−,(1)(nh)

] ∥∥∥∥
≤
∥∥∥1 − β(1)(nh)

∥∥∥ ‖r(nh)‖ (146)

eq. (49)≤ Kh(p−1)∨0‖r(nh)‖ (147)

and bound J2, by exploiting L-Lipschitz continuity of f ,
inserting the definition Eq. (14) of Ψ

(0)
h (m((n − 1)h) and

applying Eq. (48) to
∥∥β(0)(nh)

∥∥,

J2(h) ≤ L
∥∥∥m(0)(nh) − m−,(0)(nh)

∥∥∥ (148)

≤ L
∥∥∥β(0)(nh)

∥∥∥ ‖r(nh)‖ (149)

eq. (48)≤ Kh‖r(nh)‖. (150)
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Altogether, after inserting these bounds into Eq. (144),

δ(1)(nh) ≤
(
Kh(p−1)∨0 + Kh

)
‖r(nh)‖ (151)

≤ Kh((p−1)∨0)∧1‖r(nh)‖ (152)

eq. (31)≤ Kh(p∨1)∧2 (153)

+
(
Kh((p−1)∨0)∧1 + Kh(p∨1)∧2) δ(1)((n − 1)h)

=: T̄
(
δ(1)((n − 1)h)

)
. (154)

As p ≥ 1 (by Assumption 4), BFT is applicable for all suffi-
ciently small h > 0 such that Kh((p−1)∨0)∧1+Kh(p∨1)∧2 <

1 and so T̄ is a contraction with a unique fixed point δ∞ of
order

δ∞ ≤ Kh(p∨1)∧2

1 − (
Kh((p−1)∨0)∧1 + Kh(p∨1)∧2) (155)

≤ Kh(p∨1)∧2. (156)

We proceed with showing by induction that, for all n ∈
[T /h],

δ(1)(nh) ≤ δ(1)(0) ∨ 2δ∞. (157)

The base case n = 0 is trivial. For the inductive step,
we distinguish two cases. If δ(1)((n − 1)h) ≤ δ∞, then
T̄ (δ(1)((n − 1)h)) < 2δ∞, since

T̄ (δ(1)((n − 1)h)) − δ∞ ≤
∣∣∣δ∞ − T̄ (δ(1)((n − 1)h))

∣∣∣

(158)

< δ∞ − δ(1)((n − 1)h)︸ ︷︷ ︸
≥0

(159)

≤ δ∞. (160)

In this case,

δ(1)(nh)
eq. (154)≤ T̄

(
δ(1)((n − 1)h)

)
(161)

< 2δ∞ (162)

≤ δ(1)(0) ∨ 2δ∞, (163)

where the last inequality follows from the inductive hypothe-
sis. In the other case, namely δ(1)((n−1)h) > δ∞, it follows
that

δ(1)(nh) − δ∞ eq. (154)≤ T̄ (δ(1)((n − 1)h)) − δ∞ (164)

≤
∣∣∣T̄ (δ(1)((n − 1)h)) − δ∞

∣∣∣ (165)

≤
∣∣∣δ(1)((n − 1)h) − δ∞

∣∣∣ (166)

= δ(1)((n − 1)h) − δ∞, (167)

which, after adding δ∞ and applying the inductive hypothe-
sis, completes the inductive step. Hence, Eq. (157) holds.
Since this bound is uniform in n, inserting the orders of
δ(1)(0) from Lemma 7 and of δ∞ from Eq. (155) yields
Eq. (50). ��

J Proof of Theorem 15

Proof Again, w.l.o.g. d = 1. We first show that the bounds
Eqs. (67) and (68) hold and then argue that they are sharp.
The recursion for P−

00(nh) is given by

P−
00((n + 1)h)

eqs. (10),(6)= P00(nh) + 2hP01(nh)

+ h2P11(nh) + σ 2

3
h3 (168)

= P−
00(nh) − β(0)(nh)P−

01(nh) + σ 2

3
h3,

+ 2hRβ(0)(nh) + h2Rβ(1)(nh) (169)

where we used P00(nh) = P−
00(nh) − β(0)P−

01(nh) and
P11(nh) = Rβ(1)(nh) (both due to Eq. (15) and Eq. (11)),
as well as P01(nh) = Rβ(0)(nh) (see Eq. (127)), for the last
equality in Eq. (169). By P−

01(nh) ≤ P01(nh) and |β(1)| ≤ 1
(due to Eq. (11)), application of the triangle inequality to
Eq. (169) yields

P−
00 ((n + 1)h) ≤ P−

00(nh) +
∣∣∣β(0)(nh)

∣∣∣ |P01(nh)|

+ 2hR
∣∣∣β(0)(nh)

∣∣∣ + h2R + σ 2

3
h3, (170)

which, by Eqs. (47) and (48), implies

P−
00((n + 1)h) ≤ P−

00(nh) + Kh(p+2)∧3. (171)

This, by N = T /h, implies Eq. (67). Since P00(nh) ≤
P−
00(nh), this bound is also valid for P00, i.e., Eq. (68) holds.

The bound Eq. (67) is sharp, since, e.g., when the covari-
ance matrices are in the steady state, the covariance matrix
keeps growing by a rate of Kh(p+2)∧3 for all sufficiently
small h > 0, since the only negative summand in Eq. (169)
is given by
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β∞,(0)P∞
01 = S1(h) × S2(h) × S3(h) ∈ Θ(h5∧

3p+7
2 ),

(172)

where the factors have, due to R ≡ Khp, the following
orders:

S1(h) = 1

2
h2 ∈ Θ(h2), (173)

S2(h) =
√

(σ 2h)2 + 4(σ 2h)R, ∈ Θ(h1∧
p+1
2 ), (174)

S3(h) = ((σ 2h) + 2R)
√

(σ 2h)2 + 4(σ 2h)R

+ (σ 2h)2 + 4(σ 2h)R ∈ Θ(h2∧(p+1)). (175)

The orders in Eqs. (173) to (175) imply the order in Eq. (172).
Hence, the sole negative summand−β∞,(0)P∞

01 of Eq. (169)

is inΘ(h5∧
3p+7
2 ) and thereby of higher order than the remain-

ing positive summands of Eq. (169):

2hR︸︷︷︸
∈Θ(h p+1)

β∞,(0)(nh)︸ ︷︷ ︸
∈Θ(h)

∈ Θ(h p+2), (176)

h2R︸︷︷︸
∈Θ(h p+2)

β∞,(1)(nh)︸ ︷︷ ︸
∈Θ(1), by eq. (44)

∈ Θ(h p+2), (177)

σ 2

3
h3 ∈ Θ

(
h3
)

. (178)

Hence, for all sufficiently small h > 0, it still holds in the
steady state that P−

00((n + 1)h) − P−
00(nh) ≥ Kh(p+2)∧3,

and therefore Eq. (67) is sharp. The sharpness of Eq. (67) is
inherited by Eq. (68) since, in the steady state, by Eqs. (15)
and (11), P00(nh) = P−

00(nh) − β(0),∞P−,∞
01 and the sub-

tracted quantity β(0),∞P−,∞
01 is—as shown above—only of

order Θ(h5∧
3p+7
2 ). ��
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