1,794 research outputs found

    Geodesic acoustic modes in a fluid model of tokamak plasma : the effects of finite beta and collisionality

    Full text link
    Starting from the Braginskii equations, relevant for the tokamak edge region, a complete set of nonlinear equations for the geodesic acoustic modes (GAM) has been derived which includes collisionality, plasma beta and external sources of particle, momentum and heat. Local linear analysis shows that the GAM frequency increases with collisionality at low radial wave number krk_{r} and decreases at high krk_{r}. GAM frequency also decreases with plasma beta. Radial profiles of GAM frequency for two Tore Supra shots, which were part of a collisionality scan, are compared with these calculations. Discrepency between experiment and theory is observed, which seems to be explained by a finite krk_{r} for the GAM when flux surface averaged density n\langle n \rangle and temperature T\langle T \rangle are assumed to vanish. It is shown that this agreement is incidental and self-consistent inclusion of n\langle n \rangle and T\langle T \rangle responses enhances the disagreement more with krk_r at high krk_{r} . So the discrepancy between the linear GAM calculation, (which persist also for more "complete" linear models such as gyrokinetics) can probably not be resolved by simply adding a finite krk_{r}

    Non-reversible Gaussian processes for identifying latent dynamical structure in neural data

    Get PDF
    A common goal in the analysis of neural data is to compress large population recordings into sets of interpretable, low-dimensional latent trajectories. This problem can be approached using Gaussian process (GP)-based methods which provide uncertainty quantification and principled model selection. However, standard GP priors do not distinguish between underlying dynamical processes and other forms of temporal autocorrelation. Here, we propose a new family of “dynamical” priors over trajectories, in the form of GP covariance functions that express a property shared by most dynamical systems: temporal non-reversibility. Non-reversibility is a universal signature of autonomous dynamical systems whose state trajectories follow consistent flow fields, such that any observed trajectory could not occur in reverse. Our new multi-output GP kernels can be used as drop-in replacements for standard kernels in multivariate regression, but also in latent variable models such as Gaussian process factor analysis (GPFA). We therefore introduce GPFADS (Gaussian Process Factor Analysis with Dynamical Structure), which models single-trial neural population activity using low-dimensional, non-reversible latent processes. Unlike previously proposed non-reversible multi-output kernels, ours admits a Kronecker factorization enabling fast and memory-efficient learning and inference. We apply GPFADS to synthetic data and show that it correctly recovers ground truth phase portraits. GPFADS also provides a probabilistic generalization of jPCA, a method originally developed for identifying latent rotational dynamics in neural data. When applied to monkey M1 neural recordings, GPFADS discovers latent trajectories with strong dynamical structure in the form of rotations

    Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots

    Get PDF
    The authors report the temperature dependence of the near-infrared photoluminescence (PL) emission from thiol-capped PbS quantum dots. The high thermal stability of the PL allows the authors to study the thermal broadening of the dot emission over an extended temperature range (4-300 K). The authors show that the linewidth of the dot PL emission is strongly enhanced at temperatures above 150 K. This behavior is attributed to dephasing of the quantum electronic states by carrier interaction with longitudinal optical phonons. The authors' data also indicate that the strength of the carrier-phonon coupling is larger in smaller dots. © 2007 American Institute of Physics

    The I-mode confinement regime at ASDEX Upgrade: global propert ies and characterization of strongly intermittent density fluctuations

    Get PDF
    Properties of the I­mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L­I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I­mode pedestal is peeling­ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ( ≈ ⊥ k 5 – 12 cm − 1 , with ⊥ k the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X­point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.European Union (EUROfusion 633053)European Union (EUROfusion AWP15­ENR­09/IPP­02

    Assessment on experimental bacterial biofilms and in clinical practice of the efficacy of sampling solutions for microbiological testing of endoscopes

    Get PDF
    International audienceOpinions differ on the value of microbiological testing of endoscopes, which varies according to the technique used. We compared the efficacy on bacterial biofilms of sampling solutions used for the surveillance of the contamination of endoscope channels. To compare efficacy, we used an experimental model of a 48-h Pseudomonas biofilm grown on endoscope internal tubing. Sampling of this experimental biofilm was performed with a Tween 80-lecithin-based solution, saline, and sterile water. We also performed a randomized prospective study during routine clinical practice in our hospital sampling randomly with two different solutions the endoscopes after reprocessing. Biofilm recovery expressed as a logarithmic ratio of bacteria recovered on bacteria initially present in biofilm was significantly more effective with the Tween 80-lecithin-based solution than with saline solution (P = 0.002) and sterile water (P = 0.002). There was no significant difference between saline and sterile water. In the randomized clinical study, the rates of endoscopes that were contaminated with the Tween 80-lecithin-based sampling solution and the saline were 8/25 and 1/25, respectively (P = 0.02), and the mean numbers of bacteria recovered were 281 and 19 CFU/100 ml (P = 0.001), respectively. In conclusion, the efficiency and therefore the value of the monitoring of endoscope reprocessing by microbiological cultures is dependent on the sampling solutions used. A sampling solution with a tensioactive action is more efficient than saline in detecting biofilm contamination of endoscopes

    tt-Martin boundary of killed random walks in the quadrant

    Get PDF
    We compute the tt-Martin boundary of two-dimensional small steps random walks killed at the boundary of the quarter plane. We further provide explicit expressions for the (generating functions of the) discrete tt-harmonic functions. Our approach is uniform in tt, and shows that there are three regimes for the Martin boundary.Comment: 18 pages, 2 figures, to appear in S\'eminaire de Probabilit\'e

    Methodological Aspects of Spontaneous Crystalluria Studies in Calcium Stone Formers

    Get PDF
    Despite nearly a half-century of study, the clinical value of spontaneous crystalluria (Cx) examinations in calcium stone formers (CaSF) is still uncertain. The analytical complexity of urine particle study is largely responsible for this situation. As a result, there is no consensus regarding technical methods in Cx with several techniques for urine sampling and three different instruments currently used for particle study, namely, particle counting (PC), light microscopy (LM) and petrographic microscopy (PM). In this work, we first examined urine sampling and instrument methods regarding their appropriateness for Cx studies. Then we performed a comparative analysis of Cx studies in CaSF. Despite many technical and clinical discrepancies, several studies agree that the frequency of all particles and of the weddellite and whewellite calcium oxalate (CaOx) crystalline phases are increased in CaSF as compared to normal subjects (NS). Particle sizes and aggregation ratio are also often increased. Altogether, these results reinforce the need for an efficient method for Cx studies in these patients. Examining each technique leads us to conclude that most particle parameters can be studied by direct LM observation of freshly voided urine samples, i.e., urine samples without any separation steps. For clinical applications, several examinations should be performed, first to define the specific Cx characteristics in a patient, then for the study of treatment efficiency on Cx control, and finally, during the patient follow-up. Due to Cx variability in each patient, the frequency of Cx examinations during each phase needs to be determined in long-term comparative prospective studies of CaSF

    Martin boundary of a reflected random walk on a half-space

    Full text link
    The complete representation of the Martin compactification for reflected random walks on a half-space Zd×N\Z^d\times\N is obtained. It is shown that the full Martin compactification is in general not homeomorphic to the ``radial'' compactification obtained by Ney and Spitzer for the homogeneous random walks in Zd\Z^d : convergence of a sequence of points znZd1×Nz_n\in\Z^{d-1}\times\N to a point of on the Martin boundary does not imply convergence of the sequence zn/znz_n/|z_n| on the unit sphere SdS^d. Our approach relies on the large deviation properties of the scaled processes and uses Pascal's method combined with the ratio limit theorem. The existence of non-radial limits is related to non-linear optimal large deviation trajectories.Comment: 42 pages, preprint, CNRS UMR 808

    On non-zero space average density perturbation effects in tokamak plasma reflectometer signals

    Get PDF
    12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)The effects of the non-zero average density perturbation on phase and amplitude measured by reflectometry are presented. The non-zero average density perturbation on the phase variation can be seen as an index effect as soon as the shape of the density perturbation does not introduce spectral effects. Amplitude modulation in time follows generally the properties of the cut-off layer seen as a mirror but some specific situations produce a time modulation two times higher than the input time variation of the density perturbation as observed in Tore Supra. The introduction of secondary cut-off can exhibit this effect as shown in 2D simulations
    corecore