351 research outputs found

    Kristapurāáč‡a: Translating the Name of God in Early Modern Goa

    Get PDF
    In the 16th and 17th centuries, Jesuit missionaries began to translate Christian doctrine and mythology into Indian languages. Most critical became the question how the very name(s) of God and gods can be translated. Artfully composed texts known as Christian Purāáč‡as borrowed from the religious terminology and literary styles of Indian devotional literature and are praised today for mediating between the cultures of Christians and Hindus (the latter called ‘gentiles’ in the contemporary sources). At the same time, the Portuguese-Catholic regime in India launched a ruthless iconoclastic campaign against the culture of the Indian gentiles, destroying their temples and images and denigrating their allegedly ‘false gods.’ Against this background, the article addresses the questions of what the relation was between translation and violence; how hermeneutics and destruction coexisted; and how the idea that the translations facilitated the modern emergence of religious pluralism is to be qualified

    Evaluating single-scale and/or non-planar diagrams by differential equations

    Get PDF
    We apply a recently suggested new strategy to solve differential equations for Feynman integrals. We develop this method further by analyzing asymptotic expansions of the integrals. We argue that this allows the systematic application of the differential equations to single-scale Feynman integrals. Moreover, the information about singular limits significantly simplifies finding boundary constants for the differential equations. To illustrate these points we consider two families of three-loop integrals. The first are form-factor integrals with two external legs on the light cone. We introduce one more scale by taking one more leg off-shell, p22≠0p_2^2\neq 0. We analytically solve the differential equations for the master integrals in a Laurent expansion in dimensional regularization with Ï”=(4−D)/2\epsilon=(4-D)/2. Then we show how to obtain analytic results for the corresponding one-scale integrals in an algebraic way. An essential ingredient of our method is to match solutions of the differential equations in the limit of small p22p_2^2 to our results at p22≠0p_2^2\neq 0 and to identify various terms in these solutions according to expansion by regions. The second family consists of four-point non-planar integrals with all four legs on the light cone. We evaluate, by differential equations, all the master integrals for the so-called K4K_4 graph consisting of four external vertices which are connected with each other by six lines. We show how the boundary constants can be fixed with the help of the knowledge of the singular limits. We present results in terms of harmonic polylogarithms for the corresponding seven master integrals with six propagators in a Laurent expansion in Ï”\epsilon up to weight six.Comment: 27 pages, 2 figure

    A planar four-loop form factor and cusp anomalous dimension in QCD

    Get PDF
    We compute the fermionic contribution to the photon-quark form factor to four-loop order in QCD in the planar limit in analytic form. From the divergent part of the latter the cusp and collinear anomalous dimensions are extracted. Results are also presented for the finite contribution. We briefly describe our method to compute all planar master integrals at four-loop order.Comment: 19 pages, 3 figures, v2: typo in (2.3) fixed and coefficients in (2.6) corrected; references added and correcte

    Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry

    Get PDF
    We investigate the impact of line edge and line width roughness (LER, LWR) on the measured diffraction intensities in angular resolved extreme ultraviolet (EUV) scatterometry for a periodic line-space structure designed for EUV lithography. LER and LWR with typical amplitudes of a few nanometers were previously neglected in the course of the profile reconstruction. The 2D rigorous numerical simulations of the diffraction process for periodic structures are carried out with the finite element method (FEM) providing a numerical solution of the two-dimensional Helmholtz equation. To model roughness, multiple calculations are performed for domains with large periods, containing many pairs of line and space with stochastically chosen line and space widths. A systematic decrease of the mean efficiencies for higher diffraction orders along with increasing variances is observed and established for different degrees of roughness. In particular, we obtain simple analytical expressions for the bias in the mean efficiencies and the additional uncertainty contribution stemming from the presence of LER and/or LWR. As a consequence this bias can easily be included into the reconstruction model to provide accurate values for the evaluated profile parameters. We resolve the sensitivity of the reconstruction from this bias by using the LER/LWR perturbed efficiency datasets for multiple reconstructions. If the scattering efficiencies are bias-corrected, significant improvements are found in the reconstructed bottom and top widths toward the nominal values

    Hydrophobization of Monolithic Resorcinol-Formaldehyde Xerogels by Means of Silylation

    Get PDF
    In materials research, the control of wettability is important for many applications. Since they are typically based on phenolics, organic aerogels, and xerogels are intrinsically hydrophilic in nature, and examples of the chemical functionalization of such gels are scarce and often limited to powders. This study reports on the silylation of monolithic resorcinol-formaldehyde (RF) xerogels using solutions of silyl chlorides and triflates, respectively, in combination with an amine base. The resulting gels are structurally characterized by means of elemental analysis, X-ray photoelectron spectroscopy, pycnometry, sorption analysis, and scanning electron microscopy with electron-dispersive X-ray spectroscopy. The wetting behavior of the silylated gels was studied by the determination of the contact angle to water after exposure of the gels to ambient air. Additionally, the uptake of liquid water and aqueous acids and bases was investigated. As a result, processes for the functionalization of RF xerogels with sterically demanding silyl moieties have been established. Although the analyses indicate that silylation occurred to a rather small extent, highly hydrophobic gels resulted which retained the wetting behavior over the course of several months with contact angles of >130°. Monoliths bearing sterically demanding silyl groups showed higher stability towards aqueous acid than trimethylsilylated RF gels

    Crystallization and preliminary X-ray crystallographic analysis of yeast NAD+-specific isocitrate dehydrogenase. Corrigendum

    Get PDF
    A corrigendum to the article by Hu et al. (2005), Acta Cryst. F61, 486–488

    Hyponormal and strongly hyponormal matrices in inner product spaces

    Get PDF
    Complex matrices that are structured with respect to a possibly degenerate indefinite inner product are studied. Based on earlier works on normal matrices, the notions of hyponormal and strongly hyponormal matrices are introduced. A full characterization of such matrices is given and it is shown how those matrices are related to different concepts of normal matrices in degenerate inner product spaces. Finally, the existence of invariant semidefinite subspaces for strongly hyponormal matrices is discussed
    • 

    corecore