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Abstract

We investigate the impact of line edge and line width roughness (LER, LWR) on the

measured diffraction intensities in angular resolved extreme ultraviolet (EUV) scatterom-

etry for a periodic line-space structure designed for EUV lithography. LER and LWR with

typical amplitudes of a few nanometers were previously neglected in the course of the

profile reconstruction. The 2D rigorous numerical simulations of the diffraction process for

periodic structures are carried out with the finite element method (FEM) providing a nu-

merical solution of the two-dimensional Helmholtz equation. To model roughness, multiple

calculations are performed for domains with large periods, containing many pairs of line

and space with stochastically chosen line and space widths. A systematic decrease of

the mean efficiencies for higher diffraction orders along with increasing variances is ob-

served and established for different degrees of roughness. In particular, we obtain simple

analytical expressions for the bias in the mean efficiencies and the additional uncertainty

contribution stemming from the presence of LER and/or LWR. As a consequence this bias

can easily be included into the reconstruction model to provide accurate values for the

evaluated profile parameters. We resolve the sensitivity of the reconstruction from this

bias by using the LER/LWR perturbed efficiency datasets for multiple reconstructions. If

the scattering efficiencies are bias-corrected, significant improvements are found in the

reconstructed bottom and top widths toward the nominal values.

1 Introduction

Together with classical metrology techniques such as electron and optical microscopy, scat-

terometry is widely used to evaluate the precision of diffractive elements in lithography [21].

Since the critical dimensions (CDs) of such elements decrease continuously with the progress

in technology, extreme ultraviolet (EUV) scatterometry using light with wavelengths in a small

range around 13.5 nm is an adequate tool for the characterization of photo-masks and wafers

[12, 27, 19, 22].

However, the determination of the CDs from measured light diffraction patterns is a challeng-

ing task. The numerical simulation of the scattering process requires a rigorous modeling by

Maxwell’s equations [20]. Many methods have been developed to deal with this problem [3,

14, 15, 16, 25]. In this work the finite element method (FEM), that is also capable of comput-

ing highly oscillatory fields [5, 8, 2], is applied. Solving the inverse problem of scatterometry

amounts to determining the geometry of an optical grating whose diffraction pattern fits a given

set of measurement data best. Like many inverse problems, the inverse problem of scatterom-

etry is ill-posed [24] and its treatment requires a priori information. A common approach for its

regularization is to set up an equivalent low dimensional optimization problem with a weighted

least squares function that is minimized using iterative algorithms [9, 1]. The a priori informa-

tion in this case not only includes information about the geometrical profile of the investigated

element, but also knowledge of the variances of the measured data.

Typically the surface structure is sought in a certain class of gratings that can be described by

a small number of parameters. Their values are assumed to lie in certain intervals according to
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the known quality of the manufacturing process. The weight factors in the least squares function

account for measurement uncertainties and therefore represent the a priori knowledge of the

underlying measurement error model. In previous publications [10, 17, 9] the reconstructions

have been obtained with fixed weight factors commonly representing a relative measurement

uncertainty of about 1-3%. A comparison of the reconstructed profiles using EUV-scatterometry

and the results obtained using atomic force and electron microscopy [26] has revealed that

scatterometry underestimates the side-wall angle, an important feature of the EUV-mask, by

several degrees. Imperfect modeling is supposed to be one of the main reasons for this [9, 18,

13]. In particular, to get reliable simulations and reconstructions, line edge roughness (LER)

and line width roughness (LWR) have to be taken into account. Recently, Kato and Scholze

[13] have suggested approximative analytical expressions for the systematic corrections of the

scattered efficiencies stemming from LER and LWR. They have applied Fraunhofer’s diffraction

method, i.e., the Fourier transform of the reflectivity function of a perturbed binary grating. They

also provide formulas for the resulting contributions of LER and LWR to the variances of the

efficiencies. These results were, however, obtained for a simplified reflectivity function and not

for a realistic geometry of a scatterometry mask. One main goal of the present paper is to

resolve the correction to the mean values and the variances of the efficiencies stemming from

the influences of LER and LWR based on a realistic geometry.

The present numerical study investigates the impact of LER and LWR on the rigorously cal-

culated diffraction patterns for EUV scatterometry. We use a typical EUV mask composed of

stacked TaO-TaN-SiO2 absorber lines of 80 nm height, 93.33 nm width, and a pitch of 280 nm.

To enable the reflection of the incident light a system of layers is coated beneath the line space

structure of the EUV mask. This underlying multilayer with a total thickness of 360 nm consists

of 49 periodically repeated groups of a Mo-layer and a Si-layer separated by two intermedi-

ate MoSi-layers and two capping layers (SiO2, Si) on top of it. The line roughness LWR and

LER are simulated by periodic line-space structures with large periods, consisting of many lines

per period with stochastically chosen widths and center positions. A systematical decrease of

the mean efficiencies for higher diffraction orders along with increasing variances is found and

established for different degrees of roughness. This systematic bias has to be included in the

reconstruction model to provide better results for the reconstructed profile parameters.

After a brief description of the mathematical model in Section 2, Section 3 presents the 2D

model of LER and LWR used to simulate different degrees of line roughness (cf. [13]). Section

4 contains the results obtained for different numbers of lines per period in the FEM domain and

for the different degrees of roughness, respectively. The efficiencies of the randomly created

samples are computed for at least 100 realizations of a "rough"grating. The results allow to

estimate the mean values, the variances and the deviations from the reference values obtained

for the perfectly periodic ("non-rough") grating structure. Finally in Section 5, we are using the

LER/LWR perturbed efficiency datasets for repeated reconstructions, i.e., we apply Monte Carlo

sampling to study the impact of aperiodic perturbations on the resulting reconstructed profile

parameters. The crucial impacts of line roughness on the reconstructed CDs are confirmed,

especially the systematic bias and the implications of the increasing variances of the efficiencies

with higher diffraction orders are demonstrated. Section 6 closes the paper with a discussion of

the result and the conclusions.
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2 Mathematical Model of Scatterometry

The mathematical model to describe the propagation of electromagnetic waves in matter is

based on Maxwell’s equations. From incident light data and characteristic parameters of the

irradiated surface profile, the efficiencies and phase shifts for the different diffraction directions

are calculated. The time-harmonic Maxwell equations reduce to the two-dimensional Helmholtz

equation [20] if geometry and material properties are invariant in one direction

∆u (x, y) + k2u (x, y) = 0. (1)

In this equation u is the transversal field component that oscillates in the groove direction and

k is the wave number k (x, y) = ω (µ0ε (x, y))
1/2

that is constant for areas filled with the

same material. The boundary conditions that are imposed on this partial differential equation

are the common transmission conditions on the interfaces between domains, quasi-periodic

boundary conditions on the lateral boundaries due to the periodic nature of the structure and

the usual outgoing wave conditions in the infinite regions [8]. This boundary value problem

can be solved with the finite element method (FEM) for elliptic PDEs [4]. We use the software

package DIPOG [6] as the workhorse for our investigations, developed by Weierstrass Institute

for Applied Analysis and Stochastics (WIAS) in Berlin.

A measurement dataset, i.e., the diffraction pattern is usually given as a vector y=(y1,. . ., ym),
consisting of measured efficiencies or phase shift differences for different wavelengths, incident

angles or polarization states. We assume that mask and illumination can be parameterized

by a vector p = (p1, . . . , pn, λk, θl). Here pi denote geometry parameters of the line-space

structure, λk and θl are wave lengths and angles of incidence for the incoming light. By f
we denote the nonlinear operator mapping p to the corresponding diffraction pattern f (p) =
(f1 (p) , . . . , fm (p)). Note that f is calculated by solving the PDE in Equation (1). The inverse

problem of scatterometry can then be formulated as a regression problem minimizing the least

squares functional

χ2 (p) = ‖f (p)− y‖2 =
m
∑

j=1

ωj [fj (p)− yj ]
2 . (2)

The ωj ’s are weight factors that are usually chosen to be the reciprocal variances of the mea-

surements yj . In the present study we use simulated measurement datasets for the diffracted

efficiencies, i.e., the weight factors, resp. the variances of the measurements are known exactly

and the weighted LSQ method is suitable for solving the inverse problem. Note that accurate

variance estimates are crucial for the application of weighted LSQ and alternative optimization

methods like maximum likelihood estimation are appropriate in the case of unknown variances

[11]. Supposing independent measurements and the absence of systematic errors, the mea-

surement errors of the jth data point can be modeled as being normally distributed with zero

mean, i.e., εj ∼ N
(

0, σ2

j

)

. Their variances σ2

j are composed of two independent random

variables, such that

σ2

j =
(

a · fj (p)
)2

+ b2. (3)

The first term (a · fj(p))2 indicates the contribution of a linearly dependent noise. The second

term b2 is the contribution of the background noise independent of the measured light inten-

sities. For real EUV measurements [19, 9] a is in the range of 0.01-0.03. The constant b has

values of about 0.001-0.002%, if the efficiencies are given in per cent. Power fluctuations of the

incidental beam during the recording of the diffraction patterns are the main reason to consider
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a relative contribution to the variance given by a > 0. The average time needed to record an

EUV diffraction pattern is about one hour.

The jth measured value is considered as a sum of the value of the model function and the noise

contribution εj with the above variance σ2

j

yj = fj (p) + εj. (4)

This means that we consider the measurements as noisy realizations of the model. In Section

6 we will come back to a modified form of Equations (3) and (4) considering the effects due to

LER/LWR revealed by the results in Section 4 and 5.

3 Modeling Line Edge Roughness (LER) and Line Width

Roughness (LWR)

To model line roughness, multiple calculations are performed for domains with large periods,

containing many pairs of line and space with stochastically chosen line and space widths. Fig-

ure 1 shows this schematically. LER is modeled by random perturbations of the center positions

xi, i = 1, . . . , N , of N neighboring absorber lines, whereas the line width and the pitch d of

each profile in this chain are fixed to their nominal values. By the same token, LWR is presented

in the scheme of N neighboring lines by randomly perturbed line widths CDi, i = 1, . . . , N ,

with unperturbed centers xi and constant pitch. We assume normally distributed perturbations

with variances σ2

x and σ2

CD around the undisturbed center positions and the nominal line width.

For different lines, these perturbations are assumed to be independent. Obviously, the positions

of left and right edges of the lines are correlated in this modeling concept, i.e., the correlation

coefficient is +1 for LER and -1 for LWR, respectively. If both effects are superimposed inde-

pendently, an uncorrelated roughness of the left and right edges is provided and the variance of

each line edge position is given by σ2

edge = σ2

x+σ2

CD/4. In the following we depict this situation

as LEWR.

Imposing quasi-periodic boundary conditions for the FEM solution of the Helmholtz equation

(1), the N neighboring absorber lines form a super-cell with a period of P = N · d for the FEM

calculations and d as the pitch of the unperturbed line-space structure. Figure 1 depicts also the

Table 1: Complex indices of refraction; first three components belong to the absorber line struc-

ture and the last three ones to the underlying capping and multilayer system of the EUV mask;

MoSi depicts the intermediate layers between the Mo- and Si-layers; the values at a wave-

length of λ1=13.389 nm are itemized.

absorber line nλ1
kλ1

TaO 0.94843 0.03100

TaN 0.94201 0.03416

SiO2 0.97450 0.01531

substrate nλ1
kλ1

Si 0.99967 0.00182

MoSi 0.97000 0.00424

Mo 0.92552 0.00621
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Figure 1: Super-cell containing many profile lines used for roughness modeling by randomly

changed center positions for LER and randomly varied line widths for LWR (left); cross section

of a single line whose profile parameters such as the horizontal coordinates of the corners p2,

p7 and the height p6 have to be reconstructed (right).

detailed structure of the basic absorber line with the profile parameters like corners and heights

characterizing the critical dimensions of the structure. These are the parameters which have to

be reconstructed by the evaluation of the measured light diffraction pattern.

Regarding the impact of line roughness for EUV gratings, Kato et al. [13] have used the same

approach of randomly distributed center positions or line widths, respectively, for their analytical

considerations with the Fraunhofer’s diffraction method. Germer [7] applied similar design prin-

ciples for his profile variations of silicon lines investigated in the visible spectral range. Schuster

et al. [23] have studied the impact of LER for silicon gratings on the basis of sinusoidal pertur-

bations for the line positions with amplitudes in the range of 2-8 nm and for incident light with

wave lengths of 400 nm and 250 nm, respectively.

4 Results

For the rigorous calculations presented here, FEM domains containing 24 and 48 rectangular

absorber lines with a pitch of 280 nm and a line to space ratio of 0.5 are used, i.e., super-cells

with periods P of 6.72 µm and 13.44 µm, respectively. Calculations with smaller FEM domains

of 12 and 6 lines show similar systematic shifts of the mean of the perturbed efficiencies, but

they exhibit significantly increased standard deviations for the same amount of samples. For the

sake of brevity, they are not presented here.

4.1 Super-cell with 24 lines

About 1000 diffraction patterns for two different scenes of perturbations were calculated. Stan-

dard deviations of 2.8 nm and 5.6 nm, i.e., 1% and 2% relative to the pitch of d = 280 nm

were used to create random samples of super-cells containing the normally distributed center

positions and line widths, respectively. The included orders of diffraction extend from -9 to +8

and efficiencies smaller than 0.001 % were excluded. All calculations were performed with a

high level of discretization to ensure convergent results. A wavelength of λ = 13.389 nm and an
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Figure 2: Simulated diffraction patterns for randomly perturbed line-space structures at a wave-

length of 13.389 nm; blue circles depict the calculated efficiencies and diamonds the mean

efficiencies of all 1000 samples; two different random perturbations of the center positions and

the widths (LEWR): (a) σx = σCD= 2.8 nm and (b) σx = σCD= 5.6 nm.

angle of incidence of θ = 6◦ were applied, both values are typical for EUV scatterometry. The

optical indices of the material components used for the computations are listed in Table 1. On

a Linux workstation with 12 Intel Xeon processors (X5460@3.16 GHz) the computation for one

simulation takes about 15 minutes. Hence, on a high performance cluster the computation of

1000 diffraction patterns representing a roughness example needs typically 1-2 days depending

on the available cluster resources.

Figures 2, 3 and 4 reveal the details of these calculations. Looking at the simulated efficiencies

as a function of the diffraction order in Figure 2, significantly increased variances for higher

diffraction orders can be recognized. Furthermore one realizes that a doubling of line roughness

give rise to a disproportional growth of the variances of the efficiencies. The mean efficiencies

over all samples are depicted as diamonds in Figure 2.
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Figure 3: Normalized deviations from the efficiencies of the unperturbed reference line struc-

ture, depicted as circles; diamonds represent the mean over the deviations of all 1000 samples;

dashed lines indicate the mean efficiency ± standard deviation; two different random perturba-

tions of the center positions and the widths (LEWR): (a) σx = σCD= 2.8 nm and (b) σx = σCD=

5.6 nm.

A systematic nonlinear decrease of the mean efficiencies for higher diffraction orders along with
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FEM results: σ

x
 = σ

CD
 = 5.60 nm  (σ

edge
 = 6.26 nm)

FEM results: σ
x
 = σ

CD
 = 2.80 nm  (σ

edge
 = 3.13 nm)

Approx.: 1-exp(- σ
r
2 k

j
2/3); σ

r
 = 6.09 nm

Approx.: 1-exp(- σ
r
2 k

j
2/3); σ

r
 = 3.09 nm

Figure 4: Standard deviations relative to the mean perturbed efficiencies, shown as circles for

the two given examples in previous Figure 3; diamonds depict approximations by an exponential

function.

increasing variances is observed for different degrees of roughness. The deviations between the

unperturbed reference efficiencies fj,ref (p) and the mean of perturbed efficiencies fj,pert(p)
are always greater than zero. Figure 3 reveals this by comparison and normalization with the

reference values of the efficiencies obtained from the unperturbed line-space structure.

Assume that the parameter σr characterizes a general aperiodic perturbation in the sense of the

applied LEWR model (cf. Figure 1) and that σr scales with the imposed perturbations σedge =
√

σ2
x+σ2

CD/4 of the given grating samples, i.e., σr = α · σedge. Then the mean normalized

deviations relative to the references can be approximated by the following exponential function

fj,ref (p)− fj,pert
fj,ref (p)

≈ 1− exp(−σ2

rk
2

j ) = 1− exp
(

− (ασedge)
2k2

j

)

, (5)

with σr= 3.09 nm (α = 0.98(7)) and σr= 6.09 nm (α = 0.97(2)), respectively. The diffraction

order nj is expressed by the corresponding x-component of the wave vector of the propagating

plane wave mode for incidence angle θ = 0◦ (cf. [8]), i.e., kj = 2πnj/d.

Equation (5) implies that random perturbations of line and space widths cause an exponential

damping of the mean efficiencies. The exponent is proportional to the product of the squared

diffraction orders nj and a constant σ2

r which approximates the variance of the line centers and

widths. These outcomes confirm the validity of the formula derived by Kato and Scholze [13]

using the Fraunhofer approximation.

The increasing variances of the efficiencies with higher diffraction orders become also very

clear. For the given two examples of LEWR perturbations, Figure 4 depicts the standard de-

viations of the efficiencies relative to their mean values. Note that they can be approximated

by an exponential function too, just that its exponent is weighted by 1/3 compared to Equation

(5) and using the determined values 3.09 nm (α = 0.98(7)) and 6.09 nm (α = 0.97(2)) for

σr = α · σedge characterizing the damping of the mean efficiencies.

The variances belonging to the diffraction order +4 are outliers in both examples. From the

investigation in [13] for a similar EUV mask one can see that LWR is dominating the intensity

fluctuations for orders where the form factor has local minima. The form factor of a grating

describes the impact of the structure profile on the diffraction pattern by a sinc2 function. For
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FEM results: σ
edge

 = 5.6 nm         
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2/3)]/sqrt(2)

σ
r
 = 5.55 nm; k
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 = 2 π n

j
/d

d = 280 nm (period)

Figure 5: (a) Normalized deviations from the efficiencies of the unperturbed reference line struc-

ture, depicted as circles; diamonds represent the mean over the deviations of all 100 samples;

dashed lines indicate the mean efficiency ± standard deviation; random perturbations of the

center positions (LER): σx = 5.6 nm. (b) Standard deviations relative to the mean perturbed

efficiencies shown as circles for the given example; diamonds depict best approximation by an

exponential function.

our EUV grating and the applied angle of incidence of 6◦ this is the case for diffraction order +4

in the range of the considered orders.

4.2 Super-cell with 48 lines

In order to estimate the changes of the variances of the efficiencies in dependence on the num-

ber of lines in the super-cell, the calculations for a super-cell twice the size, i.e., for 48 lines per

domain are repeated. As already mentioned we have tested 6 and 12 lines per super-cell too,

but for brevity they are not presented here. Furthermore, LER and LWR perturbations are calcu-

lated separately in order to clarify their specific impacts. We impose again normally distributed

perturbations with values for σx (LER) and σCD (LWR), respectively, of 2 percent relative to

the period of 280 nm of the basic absorber line structure. The results of these calculations are

given in Figures 5 and 6. Subsequently, LEWR perturbations with σx = σCD = 5.6 nm were

imposed. The results of these simulations are shown in Figure 7. Besides the normalized devi-

ations from the efficiencies of the unperturbed reference line structure, the standard deviations

relative to the mean perturbed efficiencies as function of the diffraction order are given in these

three figures. Due to the computational cost for such large domains containing 48 lines, only

100 diffraction patterns for each scene of line roughness were calculated.

We recognize once more an exponential damping for the mean values of the efficiencies, but

now significantly reduced variances (cf. Figure 5) as it was expected due to the improved av-

eraging by doubling the line numbers. Applying Equation (5) the systematic decrease of the

mean efficiencies with higher diffraction orders can be approximated fairly well by σr = 5.55
nm (α = 0.99(1)) for the LER example and by σr = 2.74 nm (α = 0.97(8)) for the LWR

simulations indicating a significantly reduced impact of LWR except for order +4 (cf. Figure 6).

A comparison of Figures 5 and 6 shows that for equal amplitudes of LER and LWR, the LER
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FEM results: σ
edge

 = 2.80 nm

[1-exp(- σ
r
2 k

j
2/3)]/sqrt(2)

σ
r
 = 2.74 nm; k

j
 = 2π n

j
/d

d = 280 nm (period)

Figure 6: (a) Normalized deviations from the efficiencies of the unperturbed reference line struc-

ture, depicted as circles; diamonds represent the mean over the deviations of all 100 samples;

dashed lines indicate the mean efficiency ± standard deviation; random perturbations of the

line widths (LWR): σCD = 5.6 nm. (b) Standard deviations relative to the mean perturbed

efficiencies shown as circles for the given example; diamonds depict an approximation by an

exponential function.

influence both on the systematic shift of the mean (Figures 5a, 6a) and on the variance (Figures

5b, 6b) is substantially stronger. In addition, it becomes clear that the systematic damping due

to LER is nearly symmetric.

The asymmetric behavior for the positive diffraction orders and especially for order +4 in the

LEWR example (cf. Figure 7) is therefore arising from the random perturbations of the line

widths as already mentioned in the previous Subsection 4.1. The order dependent decrease of

the mean efficiencies for the LEWR scene with 48 lines is well approximated by σr = 6.17 nm

(α = 0.98(5)) applying Equation (5). Once more, this is in good accordance with the analytical

considerations in [13] employing Fraunhofer diffraction method. The results of all presented

line roughness examples and their approximations with the proposed exponential damping are

summarized in Table 2.

Table 2: Results σr applying the proposed exponential approximations (eqs. (5) and (6)) for all

calculated examples and comparison with the expected values σedge =
√

σ2
x + σ2

CD/4; for

σx = σCD ⇒ σedge = 1.118 · σx; all σ values are given in nm;

example σx σCD σedge σr α = σr/σedge

LEWR, 24 lines 2.80 2.80 3.13 3.09 0.98(7)

LEWR, 24 lines 5.60 5.60 6.26 6.09 0.97(2)

LER, 48 lines 5.60 - 5.60 5.55 0.99(1)

LWR, 48 lines - 5.60 2.80 2.74 0.97(8)

LEWR, 48 lines 5.60 5.60 6.26 6.17 0.98(5)

Note that the normalized standard deviations of the efficiencies for all examples produced by

48 lines per super-cell are fairly well approximated applying (5) and weighting of the exponent

9
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FEM results: σ
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Figure 7: (a) Normalized deviations from the efficiencies of the unperturbed reference line struc-

ture, depicted as circles; diamonds represent the mean over the deviations of all 100 samples;

dashed lines indicate the mean efficiency ± standard deviation; random perturbations of the

center positions and widths (LEWR): σx = σCD = 5.6 nm. (b) Standard deviations of the

efficiencies relative to their mean values shown as circles; diamonds depict an approximation

by an exponential function.

of this equation with one third as in Subsection 4.1 with 24 lines (cf. Figure 4). But furthermore

the whole function is scaled down by 1/
√
2 which is simply caused by the doubling of the line

numbers. Considering additional results for the normalized standard deviations obtained by 12

and 6 lines per super-cell which are not shown here, the dependency of the normalized standard

deviations of the efficiencies on the number N of lines compared to the configuration with 24

lines is well described by

Σ(N, kj , σr) ≈
√

24

N

(

1− exp(−σ2

rk
2

j/3)
)

. (6)

That means, even the normalized standard deviations Σ of the efficiencies stemming from the

presence of line roughness can be summarized by an analytic expression.

5 Impact of roughness on reconstructed critical dimensions

(CD)

The presented effects of line roughness on the efficiency pattern for the forward problem in scat-

terometry modeling are crucial for the obtained values and variances of the reconstructed profile

parameters, i.e., the CDs of the examined mask. The impact of line roughness on the efficien-

cies will pass through the reconstruction algorithms. To clarify this connection we use the LEWR

perturbed efficiency datasets for repeated reconstructions, i.e., we apply Monte Carlo sampling

to study the impact of the aperiodic perturbations on the reconstructed profile parameters.

First, an LEWR perturbed efficiency dataset with σx = σCD = 2.8 nm composed of 100 differ-

ent patterns is chosen as the measured input for reconstructions, i.e., for the minimization of the

objective functional given in Equation (2). Three profile parameters, namely the two horizontal
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Figure 8: Impact of normally distributed random perturbations of the center positions and widths

(1 % LEWR: σx = σCD = 2.8 nm; 100 samples) on the reconstructed parameters right lower

and upper corner p2, p7 and height p6 of the TaN absorber layer (a),(b); on width CDm of the

absorber layer at middle height (c) and on the side-wall angle SWA of the absorber line (d).

coordinates of the corners p2, p7 and the height p6 of the main absorber layer (cf. Figure 1),

are forming the parameter vector p to be reconstructed from the given efficiencies. Second, we

produce from the same sets of efficiencies a bias-corrected set by multiplying the efficiencies

with the corresponding inverse exponential damping factor characterizing the applied LEWR

perturbations, and then we repeat the MC reconstructions.

Figures 8 and 9 present the obtained results essentially as boxplots. The distribution of the

reconstructed parameters is given by the deviations from their nominal values. The ranges be-

tween lower and upper quartiles are indicated by boxes, the medians by lines. The whiskers

extend to the most extreme data points not considered as outliers, and the outliers are plotted

individually as plus signs. The calculated standard deviations σi, i = 2, 6, 7, for the recon-

structed parameters are given in nm.
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Figure 9: Impact of normally distributed random perturbations of the center positions and widths

(1 % LEWR: σx = σCD = 2.8 nm; 100 samples) on the reconstructed parameters right lower

and upper corner p2, p7 and height p6 of the TaN absorber layer (a),(b); on width CDm of the

absorber layer at middle height (c) and on the side-wall angle SWA of the absorber line (d);

bias-corrected datasets of efficiencies are used.
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As expected, the crucial implications of line roughness on the reconstructed CDs are confirmed,

especially the systematic bias give rise to significant shifts in the corners of the absorber line

(cf. Figure 8 (a),(b)). Note that the nominal value for CDm at the middle height of the absorber

line is 93.33 nm and 90◦ for the side-wall angle of the examined structure (cf. Figure 8 (c),(d)).

Only after compensating the LEWR perturbed efficiencies by the right inverse damping, the

reconstructed parameters show a distribution around their nominal values. Figure 9 reveals this

distinctly. The remaining variances are mainly due to the random perturbations of the efficiencies

caused by line roughness.

6 Discussion and conclusions

The most important consequence from the presented numerical experiments is that the revealed

LER/LWR-bias has to be included in the scatterometric measurement model by an order depen-

dent damping factor. The representation of the measurements and their associated variances

previously given in Section 2 extend at least to

yj = exp
(

−σ2

rk
2

j

)

· fj(p) + εj , (7)

σ2

j =
(

a · exp
(

−σ2

rk
2

j

)

· fj(p)
)2

+ b2. (8)

Note that for the variances of the measurement errors in Equation (8) only the bias is taken

into account adequately. The variances of the efficiencies due to LEWR however are not yet

considered.

For EUV measurements taken from surface areas with a size in the range of 500 µm x 500

µm we expect that the contribution of the roughness to σ2

j (cf. Equation (2)) will be significantly

reduced by spacial averaging compared to the calculated values in our investigations. Due to

the required computation time for large FEM domains along with the small EUV wavelenghts

the maximal lateral expansion of the super-cells used in this work is restricted to 13.44 µm.

Applying Equation (6) with a value of N = 1785, i.e., an imaginary extension of our FEM super-

cell period to 499.8 µm (= 0.280*1785), the normalized standard deviations of the efficiencies

would be scaled down by a factor of about 0.116 compared to the values given in Figure 4

obtained with 24 lines. Nevertheless, for higher diffraction orders, LEWR based fluctuations of

the efficiencies of several percent remain and correspond to variances as in the first term on

the right-hand side of (3) with typical values for factor a in the range of 0.01-0.03 (cf. Section

2). Therefore equation (8) for the variances of the efficiencies may be supplemented by the

estimated LEWR contributions

σ2

j =
[

a2 + Σ2(N, kj , σr)
]

·
(

exp
(

−σ2

rk
2

j

)

· fj(p)
)2

+ b2, (9)

with Σ(N, kj , σr) given by Equation (6) applied with a value of line numbers N at least ≥ 1785.

A further reduction of the contribution of Σ to the variances should, however, be expected by the

fact that no perturbations along the line direction is assumed in our two-dimensional approach.

Further investigations such as 3D calculations for perturbed line-space structures are needed

to estimate the expected further degradation of the LEWR contribution to the variances of the

efficiencies.

As already mentioned in Section 2, accurate variance estimates are crucial for the application of

weighted LSQ. In general, for real measurement datasets of efficiencies the roughness induced
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bias and the additional variances are unknown. Equations (6) to (9) represent a first approxi-

mation to describe these effects and to include them into the model. Finally, at least σr should

be treated as an additional unknown parameter which has to be reconstructed too. To solve

the indirect problem under such conditions, other optimization methods are more appropriate

(cf. [11]) and will be discussed in further publications.

The proposed equations to approximate the roughness effects are symmetric with respect to the

diffraction orders. In particular this holds for the presented LER simulations, i.e., the variations

of the center positions of the absorber lines this is very well supported. Compared to LER the

presented LWR calculations indicate a significantly reduced damping impact on the mean of the

efficiencies for equal amplitudes of perturbations. The damping factor can still be approximated

fairly well by a symmetric exponential formula. Only for some positive diffraction orders, where

the form factor of the grating causes local minima in the efficiency pattern, strongly increased

variances have been revealed.

The presented assessments of LER and LWR effects were provided for a typical EUV line-space

structure by repeated calculations for large FEM computation domains with stochastically cho-

sen line and space widths. We find acceptable results for the mean values of the efficiencies by

using an exponential damping formula similar to that of the Fraunhofer approximation. Switching

to the inverse problem, ignoring these dampings in the simulated measurement datasets leads

to large errors of the parameters in the reconstruction algorithms. Including these dampings by

providing bias-corrected datasets, we get acceptable results for the reconstruction.

Though our model is a simple two-dimensional assuming extremely slow changes of the widths

and center locations along the line direction, we conjecture that damping will improve the case

of faster changes too. Nevertheless rigorous 3D calculations for biperiodic grating structures in-

cluding stochastical perturbations similar to the proposed ones are necessary to validate finally

the impact of line roughness.
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