1,781 research outputs found

    Capillary wave dynamics on supported viscoelastic films: Single and double layers

    Full text link
    We study the capillary wave dynamics of a single viscoelastic supported film and of a double layer of immiscible viscoelastic supported films. Using both simple scaling arguments and a continuum hydrodynamic theory, we investigate the effects of viscoelasticity and interfacial slip on the relaxation dynamics of these capillary waves. Our results account for the recent observation of a wavelength-independent decay rate for capillary waves in a supported polystyrene/brominated polystyrene double layer [X. Hu {\em et al.}, Phys. Rev. E {\bf 74}, 010602 (R) (2006)].Comment: 14 pages, 9 figure

    The effect of curvature and topology on membrane hydrodynamics

    Full text link
    We study the mobility of extended objects (rods) on a spherical liquid-liquid interface to show how this quantity is modified in a striking manner by both the curvature and the topology of the interface. We present theoretical calculations and experimental measurements of the interfacial fluid velocity field around a moving rod bound to the crowded interface of a water-in-oil droplet. By using different droplet sizes, membrane viscosities, and rod lengths, we show that the viscosity mismatch between the interior and exterior fluids leads to a suppression of the fluid flow on small droplets that cannot be captured by the flat interface predictions.Comment: 4 pages, 3 figure

    Polyelectrolyte Bundles

    Full text link
    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.Comment: 10 pages, 8 figure

    Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: topology and boundary effects

    Full text link
    The role of dimensionality (Euclidean versus fractal), spatial extent, boundary effects and system topology on the efficiency of diffusion-reaction processes involving two simultaneously-diffusing reactants is analyzed. We present numerically-exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via application of the theory of finite Markov processes, and via Monte Carlo simulation. As a general rule, we conclude that for sufficiently large systems, the efficiency of diffusion-reaction processes involving two synchronously diffusing reactants (two-walker case) relative to processes in which one reactant of a pair is anchored at some point in the reaction space (one walker plus trap case) is higher, and is enhanced the lower the dimensionality of the system. This differential efficiency becomes larger with increasing system size and, for periodic systems, its asymptotic value may depend on the parity of the lattice. Imposing confining boundaries on the system enhances the differential efficiency relative to the periodic case, while decreasing the absolute efficiencies of both two-walker and one walker plus trap processes. Analytic arguments are presented to provide a rationale for the results obtained. The insights afforded by the analysis to the design of heterogeneous catalyst systems are also discussed.Comment: 15 pages, 8 figures, uses revtex4, accepted for publication in Physica

    Stress Induced Protein Changes in Tall Fescue

    Get PDF
    Tall fescue (Festuca arundinacea Schreb.), the most important pasture grass in Arkansas, exhibits different agricultural properties when it is infected by its mutualistic endophyte Acremonium coenophialum Morgan-Jones and Gams. We postulate that the presence of endophyte exerts a stress on the host that enhances or detracts from the host\u27s ability to express specific genes. We tested this hypothesis by heat stressing infected and non-infected, juvenile and mature tall fescue, and examining their protein profiles by SDS-PAGE analysis. The results indicate that mature, infected, stressed grass produced greater amounts of Rubisco (ribulose bisphosphate carboxylase-oxygenase) than all other treatments. Additionally, the mature, infected, stressed grass exhibited a 20 k Dalton protein band which was not apparent in other treatments. These observations support the possibility that the endophyte prestresses the grass, and they suggest a molecular mechanism for this response

    Biodiversity conservation across scales: lessons from a science–policy dialogue

    Get PDF
    One of the core challenges of biodiversity conservation is to better understand the interconnectedness and interactions of scales in ecological and governance processes. These interrelationships constitute not only a complex analytical challenge but they also open up a channel for deliberative discussions and knowledge exchange between and among various societal actors which may themselves be operating at various scales, such as policy makers, land use planners, members of NGOs, and researchers. In this paper, we discuss and integrate the perspectives of various disciplines academics and stakeholders who participated in a workshop on scales of European biodiversity governance organised in Brussels in the autumn of 2010. The 23 participants represented various governmental agencies and NGOs from the European, national, and sub-national levels. The data from the focus group discussions of the workshop were analysed using qualitative content analysis. The core scale-related challenges of biodiversity policy identified by the participants were cross-level and cross-sector limitations as well as ecological, social and social-ecological complexities that potentially lead to a variety of scale-related mismatches. As ways to address these cha- llenges the participants highlighted innovations, and an aim to develop new interdisciplinary approaches to support the processes aiming to solve current scale challenges

    A framework for a European network for a systematic environmental impact assessment of genetically modified organisms (GMO)

    Get PDF
    The assessment of the impacts of growing genetically modified (GM) crops remains a major political and scientific challenge in Europe. Concerns have been raised by the evidence of adverse and unexpected environmental effects and differing opinions on the outcomes of environmental risk assessments (ERA). The current regulatory system is hampered by insufficiently developed methods for GM crop safety testing and introduction studies. Improvement to the regulatory system needs to address the lack of well designed GM crop monitoring frameworks, professional and financial conflicts of interest within the ERA research and testing community, weaknesses in consideration of stakeholder interests and specific regional conditions, and the lack of comprehensive assessments that address the environmental and socio economic risk assessment interface. To address these challenges, we propose a European Network for systematic GMO impact assessment (ENSyGMO) with the aim directly to enhance ERA and post-market environmental monitoring (PMEM) of GM crops, to harmonize and ultimately secure the long-term socio-political impact of the ERA process and the PMEM in the EU. These goals would be achieved with a multi-dimensional and multi-sector approach to GM crop impact assessment, targeting the variability and complexity of the EU agro-environment and the relationship with relevant socio-economic factors. Specifically, we propose to develop and apply methodologies for both indicator and field site selection for GM crop ERA and PMEM, embedded in an EU-wide typology of agro-environments. These methodologies should be applied in a pan-European field testing network using GM crops. The design of the field experiments and the sampling methodology at these field sites should follow specific hypotheses on GM crop effects and use state-of-the art sampling, statistics and modelling approaches. To address public concerns and create confidence in the ENSyGMO results, actors with relevant specialist knowledge from various sectors should be involved

    Genus expansion for real Wishart matrices

    Full text link
    We present an exact formula for moments and cumulants of several real compound Wishart matrices in terms of an Euler characteristic expansion, similar to the genus expansion for complex random matrices. We consider their asymptotic values in the large matrix limit: as in a genus expansion, the terms which survive in the large matrix limit are those with the greatest Euler characteristic, that is, either spheres or collections of spheres. This topological construction motivates an algebraic expression for the moments and cumulants in terms of the symmetric group. We examine the combinatorial properties distinguishing the leading order terms. By considering higher cumulants, we give a central limit-type theorem for the asymptotic distribution around the expected value
    corecore