2,982 research outputs found

    A design procedure and handling quality criteria for lateral directional flight control systems

    Get PDF
    A practical design procedure for aircraft augmentation systems is described based on quadratic optimal control technology and handling-quality-oriented cost functionals. The procedure is applied to the design of a lateral-directional control system for the F4C aircraft. The design criteria, design procedure, and final control system are validated with a program of formal pilot evaluation experiments

    Using a Full Spectral Raytracer for Calculating Light Microclimate in Functional-Structural Plant Modelling

    Get PDF
    Raytracers that allow the spatially explicit calculation of the fate of light beams in a 3D scene allow the consideration of shading, reflected and transmitted light in functional-structural plant models (FSPM). However, the spectrum of visible light also has an effect on cellular and growth processes. This recently created the interest to extend this modelling paradigm allowing the representation of detailed spectra instead of monochromatic or white light and to extend existing FSPM platforms accordingly. In this study a raytracer is presented which supports the full spectrum of light and which can be used to compute spectra from arbitrary light sources and their transformation at the organ level by absorption, reflection and transmission in a virtual canopy. The raytracer was implemented as an extension of the FSPM platform GroIMP

    The Rifling Meter

    Get PDF

    The Rifling Meter

    Get PDF

    The Comparison Camera

    Get PDF

    Development and test of a planar R-band accelerating structure

    Get PDF
    Planar accelerating structures, so called muffin tins, are of great interest for new accelerating techniques which are operating at high frequencies. At present the upper frequency limit for high power sources is 29.9855 GHz available at CERN. Therefore a new design of a planar traveling wave constant impedance accelerating structure is presented. A fully engineered 37-cell prototype with an operating frequency of 29.9855 GHz, which is designed for the 2 pi /3-mode, was fabricated by CNC milling technology. The design includes a power coupler, a cavity geometry optimized to compensate the effect of transverse forces, vacuum flanges and beam pipe flanges. Shown are the frequency scan of transmission and reflection measurements compared to numerical simulations with GdfidL. Further, a non resonant bead pull measurement was made to determine and verify the fundamental modes of the structure. The cavity is planned to be powered at the CLIC test stand at CERN. (4 refs)

    Artificial intelligence techniques for scheduling Space Shuttle missions

    Get PDF
    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise
    corecore