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Some general relations are derived for the wake potential, that is, the integrated Lorentz force acting on a unit charge
that passes, with constant velocity, through a region of electromagnetic fields. The wake potential is irrotational
and nearly "source-free." The longitudinal component satisfies the Laplace equation for the transverse coordinates
in the case of highly relativistic motion.
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In 1956 Panofsky and Wenzel l considered the transverse kick experienced by a relativistic
charge crossing an rf cavity. In the meantime this work has been applied to wake potentials
(see, for example Reference 2), that is, the integrated Lorentz force that acts on a unit
charge. The relation between the longitudinal derivation of the transverse wake potential
and the transverse gradient ofthe longitudinal potential is referred to as the Panofsky-Wenzel
theorem. Here we will derive it in a different, more general way.

Let us assume a probing charge traveling with constant velocity v. Then we obtain for

v x (v x B) = v(V . B) - (v· V)B = -(v· V)B ,

which we introduce into Maxwell's equation,

aB
V x E = - - - (v . V)B - V x (v x B)

at

obtaining

dB
V x (E + v x B) = V x F = -- ,

dt

where we have used

dB aB- = _. + (v . V)B .
dt at
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If the fields are excited by a driving charge q traveling along the same trajectory as the
probing charge, then the wake potential is defined essentially as the force integral along the
trajectory, but at a distance s behind the driving charge. In order to get an expression for
the wake potential we integrate Equation (2) along the trajectory, which we have chosen
parallel to the z-axis for convenience:

Z2 Z2 Z2

f (V x F)x,y,z-s,t=z/vdz = - f ~~dz = -v f dB = V(BI - B2) . (4)

Zl Zl Zl

The right-hand side of the equation vanishes if ZI - sand Z2 - S are in a field-free region
or if Bl = B2. In order to transform the left-hand side we introduce an operator 'Vs , where
the subscript s means differentiation with respect to s instead of z. Then we can invert the
order of differentiation and integration and obtain

Z2 Z2

~ f (V x F)x,y,z-s,t=z/vdz = ~ (Vt, - :s) x f F(x, y, z - s, zjv)dz = Vs x W = O.

Zl Zl

(5)
InEquation (5) we have normalized the force integral with the exciting charge and introduced
the wake potential W (remember that Wz is defined with a negative sign, such that the
exciting charge always loses energy).

The equation states that W is irrotational. We call this the generalized Panofsky-Wenzel
theorem. We obtain the usual form of it from (5) by splitting W in its longitudinal and
transverse part and crossing it with ez:

eZ x ('Vs x W) ='Vs(ez . W) - (ez . 'Vs)W

aWt
= - -- + 'Vt Wz = 0,as (6)

Le., the longitudinal derivation ofthe transverse wake potential equals the transverse gradient
of the longitudinal potential.

In Equation (5) we have shown that W is irrotational. Another relation, nearly expressing
the divergence of W, can be derived from the two remaining Maxwell's equations. From
the difference

1 aE
V . E - v . (V x B) = V . (E + v x B) = V . F = - c

2
V . at (7)

and the total time derivative of E, as given in Equation (3), we get

1 [ (V)2] aEz 1 aEz v dEz'V ·F- -v· (v· 'V)E = 'Vt ·Ft + 1- - - = Vt ·Ft +-- = -- , (8)
c2 c az y 2 az c2 d t
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where y is the Lorentz factor and v was again taken to be parallel to the z axis. In the above
equations we have not taken into account charge density and currents. We consider only
fields behind a point-like driving charge q: If we considered also p and J we would get the
space-charge force due to the fields in free space.

After integrating Equation (8) along z,

Z2 Z2

! 1 ! aEz
[Vt · F]x,y,z-s,t=z/v dz + y2 az dz

Zl Zl x,y,z-s,t=z/v

Z2

V ! dEz (V)2= - c2 dtdz = ~ (Ezl - Ez2)

Zl

and changing the order of integration and differentiation on the left-hand side,

Z2 Z2

Vr ! Ft(x, y, z-s, zjv)dz- :2 :s ! Fz(x, y, z-s, zjv)dz = (~)2 (Ezl - Ez2) , (9)

Zl Zl

we can introduce the wake potential and obtain

1 awz
Vt · W t +-- = 0,

y2 as (10)

if either EZI = Ez2 or Zl - s and Z2 - S are in a field-free region. Apart from the factor
y-2, Equation (10) indicates that W is also "source-free." For highly relativistic motion, it
follows from (10) that

awx __ awy

ax - ay

Finally, because of Equation (5), we can derive W from a scalar potential \11:

(11)

(12)

where we have assumed separability in the longitudinal coordinate.
For highly relativistic particles, y ~ 00, we neglect the second term in Equation (10)

and together with Equation (12), obtain

(13)

In other words, T satisfies the Laplace equation.
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Writing (12) in components,

S. VAGANIAN and H.HENKE

Z aT
WI =

hI a~1 '
dZ

Wz = Td;' (14)

we conclude also that the longitudinal component of the wake potential satisfies the 2­
dimensional Laplace equation in (~I, ~2). The transverse dependences of the transverse
components follow from (14).

As an example, consider circular-cylinder coordinates. Then, q; periodic solutions of (13)
are

(15)

If the axis, p = 0, is a possible trajectory, B has to be zero, and we obtain from Equation (14)
and (15) the well-known relations

w(m) = pm cos mq;AmZ~(s)z

W(m) = mpm-I cos mq;AmZm(S) (16)p

W(m) = _mpm-I sin mq;AmZm(S).q;
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