538 research outputs found

    Log Parsing Evaluation in the Era of Modern Software Systems

    Full text link
    Due to the complexity and size of modern software systems, the amount of logs generated is tremendous. Hence, it is infeasible to manually investigate these data in a reasonable time, thereby requiring automating log analysis to derive insights about the functioning of the systems. Motivated by an industry use-case, we zoom-in on one integral part of automated log analysis, log parsing, which is the prerequisite to deriving any insights from logs. Our investigation reveals problematic aspects within the log parsing field, particularly its inefficiency in handling heterogeneous real-world logs. We show this by assessing the 14 most-recognized log parsing approaches in the literature using (i) nine publicly available datasets, (ii) one dataset comprised of combined publicly available data, and (iii) one dataset generated within the infrastructure of a large bank. Subsequently, toward improving log parsing robustness in real-world production scenarios, we propose a tool, Logchimera, that enables estimating log parsing performance in industry contexts through generating synthetic log data that resemble industry logs. Our contributions serve as a foundation to consolidate past research efforts, facilitate future research advancements, and establish a strong link between research and industry log parsing

    Log Parsing Evaluation in the Era of Modern Software Systems

    Get PDF
    Due to the complexity and size of modern software systems, the amount of logs generated is tremendous. Hence, it is infeasible to manually investigate these data in a reasonable time, thereby requiring automating log analysis to derive insights about the functioning of the systems. Motivated by an industry use-case, we zoom-in on one integral part of automated log analysis, log parsing, which is the prerequisite to deriving any insights from logs. Our investigation reveals problematic aspects within the log parsing field, particularly its inefficiency in handling heterogeneous real-world logs. We show this by assessing the 14 most-recognized log parsing approaches in the literature using (i) nine publicly available datasets, (ii) one dataset comprised of combined publicly available data, and (iii) one dataset generated within the infrastructure of a large bank. Subsequently, toward improving log parsing robustness in real-world production scenarios, we propose a tool, Logchimera, that enables estimating log parsing performance in industry contexts through generating synthetic log data that resemble industry logs. Our contributions serve as a foundation to consolidate past research efforts, facilitate future research advancements, and establish a strong link between research and industry log parsing

    H2_2 [Pt(C2_2O4_4)2_2] as a Tailor‐made Halide‐free Precursor for the Preparation of Diesel Oxidation Catalysts: Nanoparticles Formation, Thermal Stability and Catalytic Performance

    Get PDF
    The aim of this study was to investigate a tailor-made metal precursor and its chemical properties to tune the properties of supported metal nanoparticles (NPs) and their catalytic performance when used as Diesel Oxidation Catalyst (DOC). The formation of extremely small Pt NPs from a new halide-free Pt complex was investigated, namely bis(oxalato)platinate, H2_2 [Pt(C2_2O4_4)2_2]. The size evolution of the supported NPs, from the formation upon the Pt precursor decomposition on γ-alumina to the sintering of the NPs at high temperatures, was followed by thermogravimetric analysis coupled with mass spectrometry (TG-MS) and differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. A correlation between the NPs’ size of the catalyst and the performance for the CO, C3_3H6_6, C3_3H8_8 and NO oxidation reactions pointed out a retained activity during test cycles, showing low sensitivity to the test conditions applied (i. e., temperature and gas composition). The overall catalytic performance was better in the fresh catalysts compared to the reference catalyst prepared from platinum nitrate, Pt(NO3_3)4_4. In particular, the different dispersion of the Pt NPs over the support obtained from the two precursors was identified as the reason for the different catalytic performance, retaining small NPs size after the tests cycles

    Erratum: Multi-wavelength, spatially resolved modelling of HD 48682’s debris disc

    Get PDF
    This is an erratum to the paper ‘Multi-wavelength, spatially resolved modelling of HD 48682’s debris disc’ that was published in MNRAS, 497, 1098–1109 (2020). In the original version of the paper, the discussion in Section 3.4 on the observation and data reduction for the Sub-Millimeter Array (SMA) data corresponding to HD 48682 was incompletely described. Here, we present a more complete discussion of the SMA observations, their reduction and calibration, and a table summarising the archival SMA data used in this work

    The PLATO Dome A Site-Testing Observatory : instrumentation and first results

    Get PDF
    The PLATeau Observatory (PLATO) is an automated self-powered astrophysical observatory that was deployed to Dome A, the highest point on the Antarctic plateau, in 2008 January. PLATO consists of a suite of site-testing instruments designed to quantify the benefits of the Dome A site for astronomy, and science instruments designed to take advantage of the unique observing conditions. Instruments include CSTAR, an array of optical telescopes for transient astronomy; Gattini, an instrument to measure the optical sky brightness and cloud cover statistics; DASLE, an experiment to measure the statistics of the meteorological conditions within the near-surface layer; Pre-HEAT, a submillimeter tipping radiometer measuring the atmospheric transmission and water vapor content and performing spectral line imaging of the Galactic plane; and Snodar, an acoustic radar designed to measure turbulence within the near-surface layer. PLATO has run completely unattended and collected data throughout the winter 2008 season. Here we present a detailed description of the PLATO instrument suite and preliminary results obtained from the first season of operation

    Hermansky-Pudlak syndrome type 2 manifests with fibrosing lung disease early in childhood

    Get PDF
    Background: Hermansky-Pudlak syndrome (HPS), a hereditary multisystem disorder with oculocutaneous albinism, may be caused by mutations in one of at least 10 separate genes. The HPS-2 subtype is distinguished by the presence of neutropenia and knowledge of its pulmonary phenotype in children is scarce. Methods: Six children with genetically proven HPS-2 presented to the chILD-EU register between 2009 and 2017; the data were collected systematically and imaging studies were scored blinded. Results: Pulmonary symptoms including dyspnea, coughing, need for oxygen, and clubbing started 3.3 years before the diagnosis was made at the mean age of 8.83 years (range 2-15). All children had recurrent pulmonary infections, 3 had a spontaneous pneumothorax, and 4 developed scoliosis. The frequency of pulmonary complaints increased over time. The leading radiographic pattern was ground-glass opacities with a rapid increase in reticular pattern and traction bronchiectasis between initial and follow-up Computer tomography (CT) in all subjects. Honeycombing and cysts were newly detectable in 3 patients. Half of the patients received a lung biopsy for diagnosis; histological patterns were cellular non-specific interstitial pneumonia, usual interstitial pneumonia-like, and desquamative interstitial pneumonia. Conclusions: HPS-2 is characterized by a rapidly fibrosing lung disease during early childhood. Effective treatments are required

    Structure-Function Relationships of the Mycobacterium tuberculosis Transcription Factor WhiB1

    Get PDF
    Background Members of the WhiB-like (Wbl) protein family possess iron-sulfur clusters and are implicated in the regulation of developmental processes in Actinomycetes. Mycobacterium tuberculosis possesses seven Wbl proteins. The [4Fe-4S] cluster of M. tuberculosis WhiB1 is relatively insensitive to O2 but very sensitive to nitric oxide (NO). Nitric oxide nitrosylates the WhiB1 iron-sulfur cluster and promotes DNA-binding; the apo-forms of WhiB1 also bind DNA. However, the molecular requirements for iron-sulfur cluster acquisition and for DNA-binding by WhiB1 are poorly characterized. Methods and Findings WhiB1 variants were created by site-directed mutagenesis and the abilities of the corresponding proteins to acquire an iron-sulfur cluster and/or bind to whiB1 promoter DNA were assessed. All four Cys residues (Cys9, 37, 40, and 46) in the N-terminal region of WhiB1 were required for incorporation of a [4Fe-4S] cluster, whereas a possible alternative cluster ligand Asp13 (by analogy with M. smegmatis WhiB2) was not. The C-terminal region of WhiB1 is predicted to house the DNA-binding domain of the protein consisting of a predicted β-turn (58GVWGG62) followed by two amino acid motifs (72KRRN75 and 78TKAR81) that are conserved in WhiB1 proteins. Gly residues (Gly58, 61 and 62) in the β-turn and positively-charged residues (Lys72, Arg73, Arg74, Lys79 and Arg81) in the downstream conserved regions were required for binding of WhiB1 DNA. Conclusions Site-directed mutagenesis of M. tuberculosis whiB1 and characterization of the corresponding proteins has been used to explore structure-function relationships of the NO-responsive transcription factor WhiB1. This showed that all four conserved Cys residues in the N-terminal region are required for incorporation of iron-sulfur clusters but not for DNA-binding. Analysis of variants with amino acid substitutions in the C-terminal region revealed the crucial roles played by a predicted β-turn and two conserved positively-charged motifs in facilitating DNA-binding, but not iron-sulfur cluster acquisition, by WhiB1
    corecore