40 research outputs found
Passive case detection of malaria in Ratanakiri Province (Cambodia) to detect villages at higher risk for malaria
Additional file 9. Spatial clusters of villages with significantly higher risk of falciparum malaria cases from 2010 to 2014 in Ratanakiri Province. Only significant clusters are showed. RR: Relative risk. LLR: Log likelihood ratio
Injections, cocktails and diviners: therapeutic flexibility in the context of malaria elimination and drug resistance in Northeast Cambodia.
BACKGROUND: Adherence to effective malaria medication is extremely important in the context of Cambodia's elimination targets and drug resistance containment. Although the public sector health facilities are accessible to the local ethnic minorities of Ratanakiri province (Northeast Cambodia), their illness itineraries often lead them to private pharmacies selling "cocktails" and artemether injections, or to local diviners prescribing animal sacrifices to appease the spirits. METHODS: The research design consisted of a mixed methods study, combining qualitative (in-depth interviews and participant observation) and quantitative methods (household and cross-sectional survey). RESULTS: Three broad options for malaria treatment were identified: i) the public sector; ii) the private sector; iii) traditional treatment based on divination and ceremonial sacrifice. Treatment choice was influenced by the availability of treatment and provider, perceived side effects and efficacy of treatments, perceived etiology of symptoms, and patient-health provider encounters. Moreover, treatment paths proved to be highly flexible, changing mostly in relation to the perceived efficacy of a chosen treatment. CONCLUSIONS: Despite good availability of anti-malarial treatment in the public health sector, attendance remained low due to both structural and human behavioral factors. The common use and under-dosage of anti-malaria monotherapy in the private sector (single-dose injections, single-day drug cocktails) represents a threat not only for individual case management, but also for the regional plan of drug resistance containment and malaria elimination
Numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats
Additional file 1. Form for distribution of repellent bottles and recovery of empty bottles or household data sheet. This sheet was used to collect information from household representative during two-weekly bottle exchange. Each sheet is for each bottle exchange and for a household. Each household had a unique identification code (family code) which was used during the entire project
Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia
<p>Abstract</p> <p>Background</p> <p>In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season.</p> <p>Methods</p> <p>In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to <it>Plasmodium falciparum </it>Glutamate Rich Protein (GLURP) and <it>Plasmodium vivax </it>Merozoite Surface Protein-1<sub>19 </sub>(MSP-1<sub>19</sub>) were detected using Enzyme Linked Immunosorbent Assay (ELISA). The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART) method.</p> <p>Results</p> <p>A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for <it>P. falciparum </it>and 7.9% and 6.0% for <it>P. vivax </it>in August and November respectively). <it>P. falciparum </it>force of infection was higher in the eastern region and increased between August and November, whilst <it>P. vivax </it>force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species). CART analysis for <it>P. falciparum </it>in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to <it>P. falciparum </it>during the transmission season than children, whilst members of the Charay ethnic group demonstrated the largest increases.</p> <p>Discussion</p> <p>In areas of low transmission intensity, such as in Cambodia, the analysis of longitudinal serological data enables a sensitive evaluation of transmission dynamics. Consecutive serological surveys allow an insight into spatio-temporal patterns of malaria transmission. The use of CART enabled multiple interactions to be accounted for simultaneously and permitted risk factors for exposure to be clearly identified.</p
Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia
BackgroundIn certain regions in Southeast Asia, where malaria is reduced to forested regions populated by ethnic minorities dependent on slash-and-burn agriculture, malaria vector populations have developed a propensity to feed early and outdoors, limiting the effectiveness of long-lasting insecticide-treated nets (LLIN) and indoor residual spraying (IRS). The interplay between heterogeneous human, as well as mosquito behaviour, radically challenges malaria control in such residual transmission contexts. This study examines human behavioural patterns in relation to the vector behaviour.MethodsThe anthropological research used a sequential mixed-methods study design in which quantitative survey research methods were used to complement findings from qualitative ethnographic research. The qualitative research existed of in-depth interviews and participant observation. For the entomological research, indoor and outdoor human landing collections were performed. All research was conducted in selected villages in Ratanakiri province, Cambodia.ResultsVariability in human behaviour resulted in variable exposure to outdoor and early biting vectors: (i) indigenous people were found to commute between farms in the forest, where malaria exposure is higher, and village homes; (ii) the indoor/outdoor biting distinction was less clear in forest housing often completely or partly open to the outside; (iii) reported sleeping times varied according to the context of economic activities, impacting on the proportion of infections that could be accounted for by early or nighttime biting; (iv) protection by LLINs may not be as high as self-reported survey data indicate, as observations showed around 40% (non-treated) market net use while (v) unprotected evening resting and deep forest activities impacted further on the suboptimal use of LLINs.ConclusionsThe heterogeneity of human behaviour and the variation of vector densities and biting behaviours may lead to a considerable proportion of exposure occurring during times that people are assumed to be protected by the distributed LLINs. Additional efforts in improving LLIN use during times when people are resting in the evening and during the night might still have an impact on further reducing malaria transmission in Cambodia
Spatial clustering and risk factors of malaria infections in Ratanakiri Province, Cambodia
Background: Malaria incidence worldwide has steadily declined over the past decades. Consequently, increasingly more countries will proceed from control to elimination. The malaria distribution in low incidence settings appears patchy, and local transmission hotspots are a continuous source of infection. In this study, species-specific clusters and associated risk factors were identified based on malaria prevalence data collected in the north-east of Cambodia. In addition, Plasmodium falciparum genetic diversity, population structure and gene flows were studied.Method: In 2012, blood samples from 5793 randomly selected individuals living in 117 villages were collected from Ratanakiri province, Cambodia. Malariometric data of each participant were simultaneously accumulated using a standard questionnaire. A two-step PCR allowed for species-specific detection of malaria parasites, and SNPgenotyping of P. falciparum was performed. SaTScan was used to determine species-specific areas of elevated risk to infection, and univariate and multivariate risk analyses were carried out.Result: PCR diagnosis found 368 positive individuals (6.4%) for malaria parasites, of which 22% contained mixed species infections. The occurrence of these co-infections was more frequent than expected. Specific areas with elevated risk of infection were detected for all Plasmodium species. The clusters for Falciparum, Vivax and Ovale malaria appeared in the north of the province along the main river, while the cluster for Malariae malaria was situated elsewhere. The relative risk to be a malaria parasite carrier within clusters along the river was twice that outside the area. The main risk factor associated with three out of four malaria species was overnight stay in the plot hut, a human behaviour associated with indigenous farming. Haplotypes did not show clear geographical population structure, but pairwise Fst value comparison indicated higher parasite flow along the river.Discussion: Spatial aggregation of malaria parasite carriers, and the identification of malaria species-specific risk factors provide key insights in malaria epidemiology in low transmission settings, which can guide targeted supplementary interventions. Consequently, future malaria programmes in the province should implement additional specific policies targeting households staying overnight at their farms outside the village, in addition to migrants and forest workers
Safety of a topical insect repellent (picaridin) during community mass use for malaria control in rural Cambodia
BACKGROUND:While community distribution of topical repellents has been proposed as an additional malaria control intervention, the safety of this intervention at the population level remains poorly evaluated. We describe the safety of mass distribution of the picaridin repellent during a cluster-randomised trial in rural Cambodia in 2012-2013. METHODS:The repellent was distributed among 57 intervention villages with around 25,000 inhabitants by a team of village distributors. Information on individual adverse events, reported by phone by the village distributors, was obtained through home visits. Information on perceived side effects, reported at the family level, was obtained during two-weekly bottle exchange. Adverse events were classified as adverse reactions (events likely linked to the repellent), cases of repellent abuse and events not related to the repellent use, and classified as per Common Terminology Criteria for Adverse Events. FINDINGS:Of the 41 adverse events notified by phone by the village distributors, there were 22 adverse reactions, 11 cases of repellent abuse (6 accidental, 5 suicide attempts) and 8 non-related events. All adverse reactions were mild, occurred in the first few months of use, and mainly manifested as skin conditions. Of the 11 cases of abuse, 2 were moderate and 2 life-threatening. All cases with adverse reactions and repellent abuse recovered completely. 20% of families reported perceived side effects, mainly itching, headache, dizziness and bad smell, but few discontinued repellent use. CONCLUSIONS:Adverse reactions and abuse during mass use of picaridin were uncommon and generally mild, supporting the safety of the picaridin repellent for malaria control