32 research outputs found

    Improvement Priority Ratings for Local Rural Roads in Indiana

    Get PDF

    Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century

    Get PDF
    © 2017, The Author(s). During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts

    Towards a Single Integrative Metric on the Dynamics of Social-Environmental Systems

    No full text
    Integrating the dynamics and interconnections of natural and human system properties into a single measure would make it simpler to reliably and repeatedly assess and compare different social-environmental systems (SES). We propose a novel metric to assess the magnitudes and variations in SES dynamics by integrating longitudinal gross domestic product, population, and ecosystem net primary production. We use annual public data across the Asian Drylands Belt (ADB) from 1992 through 2016 for 18 political entities as our testbed for assessing the efficacy of the metric. We perform cross-comparisons with existing natural and social science metrics to demonstrate the validity of the proposed metric, including the Human Development Index and the Palmer Drought Severity Index. The new metric demonstrates notable and meaningful differences in trends among the political entities that reflect major social, economic and environmental events over the 25-year period. It provides unique perspectives about the three pillar components (social, economic and environmental systems) in each of the 18 political entities (PE) of the ADB. The metric also shows meaningful associations with key economic and environmental indicators and great potential for broader application and evaluation, given additional testing in other countries, regions, and biomes

    Towards a Single Integrative Metric on the Dynamics of Social-Environmental Systems

    No full text
    Integrating the dynamics and interconnections of natural and human system properties into a single measure would make it simpler to reliably and repeatedly assess and compare different social-environmental systems (SES). We propose a novel metric to assess the magnitudes and variations in SES dynamics by integrating longitudinal gross domestic product, population, and ecosystem net primary production. We use annual public data across the Asian Drylands Belt (ADB) from 1992 through 2016 for 18 political entities as our testbed for assessing the efficacy of the metric. We perform cross-comparisons with existing natural and social science metrics to demonstrate the validity of the proposed metric, including the Human Development Index and the Palmer Drought Severity Index. The new metric demonstrates notable and meaningful differences in trends among the political entities that reflect major social, economic and environmental events over the 25-year period. It provides unique perspectives about the three pillar components (social, economic and environmental systems) in each of the 18 political entities (PE) of the ADB. The metric also shows meaningful associations with key economic and environmental indicators and great potential for broader application and evaluation, given additional testing in other countries, regions, and biomes

    Sessile ciliates on artificial substrata submerged in a polluted estuary (Santos, SP, Brazil)

    No full text
    Primary growth was analysed on artificial substrata submerged at three sites of the Santos estuary (State of São Paulo, Brazil). Research on sessile ciliates was emphasized because they were the most conspicuous organisms of the primary growth developed along this estuary. Zoothamnium commune, dominated near the headwaters of the estuary, where the greatest amount of suspended matter in the water was found. Ephelota gemmipara dominated downstream. Although short time variability was observed in the colonization of substrata submerged on subsequent days, seasonal patterns could be determined. These patterns were characterized by a greater number of rare species of sessile ciliates, and a higher density of the most frequent ones, during spring and summer
    corecore