1,910 research outputs found

    A "fast growth" method of computing free energy differences

    Full text link
    Let Delta F be the free energy difference between two equilibrium states of a system. An established method of numerically computing Delta F involves a single, long ``switching simulation'', during which the system is driven reversibly from one state to the other (slow growth, or adiabatic switching). Here we study a method of obtaining the same result from numerous independent, irreversible simulations of much shorter duration (fast growth). We illustrate the fast growth method, computing the excess chemical potential of a Lennard-Jones fluid as a test case, and we examine the performance of fast growth as a practical computational tool.Comment: 17 pages + 4 figures, accepted for publication in J.Chem.Phy

    Directional solidification of flake and nodular cast iron during KC-135 low-g maneuvers

    Get PDF
    Alloys solidified in a low-gravity environment can, due to the elimination of sedimentation and convection, form unique and often desirable microstructures. One method of studying the effects of low-gravity (low-g) on alloy solidification was the use of the NASA KC-135 aircraft flying repetitive low-g maneuvers. Each maneuver gives from 20 to 30 seconds of low-g which is between about 0.1 and 0.001 gravity. A directional solidification furnace was used to study the behavior of off eutectic composition case irons in a low-g environment. The solidification interface of hypereutectic flake and spheroidal graphite case irons was slowly advanced through a rod sample, 5 mm in diameter. Controlled solidification was continued through a number of aircraft parabolas. The known solidification rate of the sample was then correlated with accelerometer data to determine the gravity level during solidification for any location of the sample. The thermal gradient and solidification rate were controlled independently. Samples run on the KC-135 aircraft exhibited bands of coarser graphite or of larger nodules usually corresponding to the regions solidified under low-g. Samples containing high phosphorous (used in order to determine the eutectic cell) exhibited larger eutectic cells in the low-g zone, followed by a band of coarser graphite

    Preliminary science report on the directional solidification of hypereutectic cast iron during KC-135 low-G maneuvers

    Get PDF
    An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it

    Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics

    Full text link
    The nonlinear dynamics of a bundle of magnetic flux ropes driven by stationary fluid motions at their endpoints is studied, by performing numerical simulations of the magnetohydrodynamic (MHD) equations. The development of MHD turbulence is shown, where the system reaches a state that is characterized by the ratio between the Alfven time (the time for incompressible MHD waves to travel along the field lines) and the convective time scale of the driving motions. This ratio of time scales determines the energy spectra and the relaxation toward different regimes ranging from weak to strong turbulence. A connection is made with phenomenological theories for the energy spectra in MHD turbulence.Comment: Published in Physics of Plasma

    Improving Frost Seeding Accuracy with an Entry Level GPS Unit

    Get PDF
    Guidance utilizing GPS has long been used for various operations in row crop agriculture. However, the high cost of these systems has limited their use in low-input forage and livestock operations. Reduced prices and the availability of used guidance systems have the potential to increase the use of precision agriculture in pastoral settings. In the past, frost seeding often resulted in areas that received no seed and areas that were double seeded. The objective of this experiment was to evaluate the impact of using a guidance system on the uniformity of seed dispersal. This study was conducted at the University of Kentucky’s Research and Education Center, located in Princeton, KY, USA in 2019 and 2021. The experimental design was a randomized complete block with four replications. Four pastures ranging from 2.5 to 4.3 ha were mock seeded using a UTV equipped with GPS guidance technology. The guidance system was initiated, but covered with an opaque bag, and the four pastures were driven by sight alone. This mock seeding process was then repeated utilizing the guidance system. Frost seeding without GPS guidance resulted in a 49% and 21% overlap in 2019 and 2021, respectively. At an overseeding cost of $89/ha and an average overlap of 35%, the cost of a guidance system could be recouped in as little as 48 ha. The results of this study indicate that GPS guidance systems have the potential to improve the uniformity of seed dispersal, thus reducing the cost of frost seeding for producers

    Magnetospheric considerations for solar system ice state

    Get PDF
    The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∼MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation

    Impact of Brown Midrib Trait on the Decomposition Rate of Sorghum-Sudangrass Residue in Pastures

    Get PDF
    Sorghum-sudangrass (Sorghum bicolor var. bicolor x bicolor var. sudanense) can provide high quality summer grazing. Some varieties possess the brown midrib (BMR) trait which results in reduced lignin resulting in higher digestibility and animal performance. If microbes in the rumen can digest BMR sorghum-sudangrass more completely, then soil macro/micro flora and fauna may do so as well. This could result in nutrients being returned to the soil faster from plants containing the BMR trait. The objective of this study was to determine the decomposition rate of BMR and non-BMR sorghumsudangrass. The experimental design was a random complete with four replications. Sorghum-sudangrass with and without the BMR trait was placed in litter decomposition bags as whole plants or divided into leaves and stems. A composite sample was taken when bags were loaded to determine initial dry matter. Loaded bags were then placed on the soil surface in a pasture and collected at 1, 2, 3, 4, 6, 8, 10, 12, 14, or 16 weeks after placement. Upon collection plant material was dried for 3-days at 55°C in a forced air oven. Dry weights at each collection date were subtracted from the initial dry weight to determine total DM loss. The BMR trait did not impact dry matter loss in the leaves. Stems possessing the BMR trait lost dry matter at a greater rate resulting in dry matter losses at 14 weeks of 78 and 68% and 59 and 47% for the BMR and non-BMR varieties in trials 1 and 2, respectively. Whole plants showed limited differences in dry matter loss at 14 weeks after placement

    A New Understanding of the Europa Atmosphere and Limits on Geophysical Activity

    Get PDF
    Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ~25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ≤4.5 x 10^(25) atoms s^(-1) two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H_2O into the Europa atmosphere or from Europa into the magnetosphere system, as has been observed at Enceladus in the Saturn system, is obtained in the present investigation

    Metalevel algorithms for variant satisfiability

    Get PDF
    Variant satisfiability is a theory-generic algorithm to decide quantifier-free satisfiability in an initial algebra when its corresponding theory has the finite variant property and its constructors satisfy a compactness condition. This paper: (i) gives a precise definition of several meta-level sub-algorithms needed for variant satisfiability; (ii) proves them correct; and (iii) presents a reflective implementation in Maude 2.7 of variant satisfiability using these sub-algorithms.NSF CNS 13-19109Ope
    corecore