
Metalevel Algorithms For Variant Satisfiability

Stephen Skeirik and José Meseguer

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

Abstract. Variant satisfiability is a theory-generic algorithm to decide
quantifier-free satisfiability in an initial algebra TΣ{E when the theory
pΣ,Eq has the finite variant property and its constructors satisfy a com-
pactness condition. This paper: (i) gives a precise definition of several
meta-level sub-algorithms needed for variant satisfiability; (ii) proves
them correct; and (iii) presents a reflective implementation in Maude
2.7 of variant satisfiability using these sub-algorithms.

Keywords: finite variant property (FVP), folding variant narrowing,
satisfiability in initial algebras, metalevel algorithms, reflection, Maude.

1 Introduction

SMT solving is at the heart of some of the most effective theorem proving and
infinite-state model checking formal verification methods that can scale up to
impressive verification tasks. A current limitation, however, is its lack of ex-
tensibility : current SMT solvers support a (typically small) library of decidable
theories. Although these theories can be combined by the Nelson-Oppen (NO)
[30, 31] or Shostak [33] methods under some conditions, only the theories in the
SMT solver library and their combinations are available to the user: any other
theories extending the tool must be implemented by the tool builders.

In practice, of course, the problem a user has to solve may not be expressible
by the theories available in an SMT solver’s library. Therefore, the goal of making
SMT solvers user-extensible, so that a user can easily define new decidable
theories and use them in the verification process is highly desirable.

For a well-known subproblem of SMT solving, such user extensibility has re-
cently been achieved: E-unifiability is the subproblem of satisfiability defined by:
(i) considering theories of the form thpTΣ{EpXqq, associated to equational the-
ories pΣ,Eq, where thpTΣ{EpXqq denotes the theory of the free pΣ,Eq-algebra
TΣ{EpXq on countably many variables X, and (ii) restricting ourselves to posi-
tive (i.e., negation-free) quantifier-free (QF) formulas. Lack of extensibility was
the same: a unification tool supports a usually small library of theories pΣ,Eq,
which can be combined by methods similar to the NO one (the paper [2] explic-
itly relates the NO algorithm and combination algorithms for unification). Again,
the user could not extend such decidable unifiability/unification algorithms by
defining new theories and using a theory-generic algorithm. This is now possi-
ble for theories pΣ,Eq satisfying the finite variant property (FVP) [13] thanks

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158313348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Skeirik and J. Meseguer

to variant unification based on folding variant narrowing [18]. In fact, variant
unification for user-definable FVP theories is already supported by Maude 2.7.

This suggests an obvious question: could variant unification be generalized
to variant satisfiability, so that, under suitable conditions on and FVP theory
pΣ,Eq, satisfiability of QF formulas in the initial algebra TΣ{E becomes decidable
by a theory-generic satisfiability algorithm? This would then make satisfiability
user-extensible as desired. This question has been positively answered in [27,
28] by giving general conditions under which satisfiability of QF formulas in the
initial algebra TΣ{E of an FVP theory pΣ,Eq is decidable. Section 3 summarizes
the main results from [27, 28]; but the punchline is easy to summarize: Suppose
that: (i) the convergent rewrite theory R � pΣ,B,Rq is a so-called FVP decom-
position of pΣ,Eq (which is what it means for pΣ,Eq to be FVP), (ii) B has
a finitary B-unification algorithm, and (ii) R has an OS-compact constructor
decomposition RΩ (definition in Section 3). Then satisfiability of QF formulas
in TΣ{E is decidable by a theory-generic algorithm called variant satisfiability.

What this paper is about. The results in [27, 28] do not really provide an
algorithm in the full sense of the word, but rather a theoretical skeleton on which
such an algorithm can be fleshed out. Specifically, they assume that the construc-
tor decomposition RΩ is OS-compact, but do not provide a way to automate both
the checking of OS-compactness and the implementation of the various auxiliary
functions needed for variant satisfiability based on OS-compactness. They also
use the notions of constructor variant and constructor unifier (see Section 3),
but give only their theoretical definitions instead of algorithms to compute them.

Main Contributions. A theory-generic algorithm such as variant satisfiability
manipulates metalevel data structures such as theories, signatures, equations,
disequations, rewrite rules, and the like. In this paper we provide for the first
time: (i) a full-fledged algorithm for variant satisfiability with its sub-algorithms;
(ii) a proof of its correctness; and (iii) a reflective Maude implementation of it.
The algorithm uses the following auxiliary functions:

These functions automate the two main unsolved problems already mentioned:
(a) checking and satisfiability in OS-compact theories; and (b) computing con-
structor variants and constructor unifiers. These sub-algorithms are defined and
proved correct at the metalevel of rewriting logic. Since rewriting logic is reflec-
tive [10], the correctness-preserving passage from the metalevel description of the
sub-algorithms to their implementations is very direct: we just meta-represent
them at the logic’s object level as suitable meta-level theories extending Maude’s
META-LEVEL module [8].

Metalevel Algorithms For Variant Satisfiability 3

2 Preliminaries on Order-Sorted Algebra and Rewriting

The material is adapted from [25, 18, 28]. Due to space limitations the following
elementary notions, which can be found in [25], are assume known: (i) order-

sorted (OS) signature Σ; (ii) set pS of connected components (each denoted rss P
pS) of a poset of sorts pS,¤q; (iii) sensible OS signature; (iv) order-sorted Σ-
algebras and homomorphisms, and its associated category OSAlgΣ ; and (v)
the construction of the term algebra TΣ and its initiality in OSAlgΣ when Σ

is sensible. Furthermore, for connected components rs1s, . . . , rsns, rss P pS,

f
rs1s...rsns
rss � tf : s11 . . . s

1
n Ñ s1 P Σ | s1i P rsis, 1 ¤ i ¤ n, s1 P rssu

denotes the family of “subsort polymorphic” operators f .
TΣ will (ambiguously) denote: (i) the term algebra; (ii) its underlying S-

sorted set; and (iii) the set TΣ �
�
sPS TΣ,s. For rss P pS, TΣ,rss �

�
s1Prss TΣ,s1 .

An OS signature Σ is said to have non-empty sorts iff for each s P S, TΣ,s �� H.
We will assume throughout that Σ has non-empty sorts. An OS signature Σ is
called preregular [19] iff for each t P TΣ the set ts P S | t P TΣ,su has a least
element, denoted lsptq. We will assume throughout that Σ is preregular.

An S-sorted set X � tXsusPS of variables, satisfies s �� s1 ñ Xs XXs1 � H,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣpXq, is the initial algebra for the signature
ΣpXq obtained by adding to Σ the variables X as extra constants. Since a ΣpXq-
algebra is just a pair pA,αq, with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α P rXÑAs, the ΣpXq-initiality of
TΣpXq can be expressed as the following theorem:

Theorem 1. (Freeness Theorem). If Σ is sensible, for each A P OSAlgΣ and
α P rXÑAs, there exists a unique Σ-homomorphism, α : TΣpXq Ñ A extending
α, i.e., such that for each s P S and x P Xs we have xαs � αspxq.

In particular, when A � TΣpXq, an interpretation of the constants in X, i.e.,
an S-sorted function σ P rXÑTΣpXqs is called a substitution, and its unique
homomorphic extension σ : TΣpXq Ñ TΣpXq is also called a substitution. De-
fine dompσq � tx P X | x �� xσu, and ranpσq �

�
xPdompσq varspxσq. A variable

specialization is a substitution ρ that just renames a few variables and may lower
their sort. More precisely, dompρq is a finite set of variables tx1, . . . , xnu, with
respective sorts s1, . . . , sn, and ρ injectively maps the x1, . . . , xn to variables
x11, . . . , x

1
n with respective sorts s11, . . . , s

1
n such that s1i ¤ si, 1 ¤ i ¤ n.

The first-order language of equational Σ-formulas is defined in the usual
way: its atoms are Σ-equations t � t1, where t, t1 P TΣpXqrss for some rss P pS
and each Xs is assumed countably infinite. The set FormpΣq of equational Σ-
formulas is then inductively built from atoms by: conjunction (^), disjunction
(_), negation (), and universal (@x :s) and existential (Dx :s) quantification
with sorted variables x:s P Xs for some s P S. The literal pt � t1q is denoted
t �� t1. Given a Σ-algebra A, a formula ϕ P FormpΣq, and an assignment α P

4 S. Skeirik and J. Meseguer

rYÑAs, with Y � fvarspϕq the free variables of ϕ, the satisfaction relation
A,α |ù ϕ is defined inductively as usual: for atoms, A,α |ù t � t1 iff tα �
t1α; for Boolean connectives it is the corresponding Boolean combination of
the satisfaction relations for subformulas; and for quantifiers: A,α |ù p@x:sq ϕ
(resp. A,α |ù pDx :sq ϕ) holds iff for all a P As (resp. some a P As) we have
A,αZtpx:s, aqu |ù ϕ, where the assignment αZtpx:s, aqu extends α by mapping
x:s to a. Finally, A |ù ϕ holds iff A,α |ù ϕ holds for each α P rYÑAs, where
Y � fvarspϕq. We say that ϕ is valid (or true) in A iff A |ù ϕ. We say that ϕ is
satisfiable in A iff Dα P rYÑAs such that A,α |ù ϕ, where Y � fvarspϕq. For a
subsignature Ω � Σ and A P OSAlgΣ , the reduct A|Ω P OSAlgΩ agrees with
A in the interpretation of all sorts and operations in Ω and discards everything
in Σ �Ω. If ϕ P FormpΩq we have the equivalence A |ù ϕ ô A|Ω |ù ϕ.

An OS equational theory is a pair T � pΣ,Eq, with E a set of Σ-equations.
OSAlgpΣ,Eq denotes the full subcategory of OSAlgΣ with objects those A P
OSAlgΣ such that A |ù E, called the pΣ,Eq-algebras. OSAlgpΣ,Eq has an
initial algebra TΣ{E [25]. Given T � pΣ,Eq and ϕ P FormpΣq, we call ϕ T -valid,
written E |ù ϕ, iff A |ù ϕ for each A P OSAlgpΣ,Eq. We call ϕ T -satisfiable iff
there exists A P OSAlgpΣ,Eq with ϕ satisfiable in A. Note that ϕ is T -valid iff
 ϕ is T -unsatisfiable. The inference system in [25] is sound and complete for OS
equational deduction, i.e., for any OS equational theory pΣ,Eq, and Σ-equation
u � v we have an equivalence E $ u � v ô E |ù u � v. Deducibility
E $ u � v is abbreviated as u �E v, called E-equality. An E-unifier of a system
of Σ-equations, i.e., a conjunction φ � u1 � v1 ^ . . . ^ un � vn of Σ-equations
is a substitution σ such that uiσ �E viσ, 1 ¤ i ¤ n. An E-unification algorithm
for pΣ,Eq is an algorithm generating a complete set of E-unifiers Unif Epφq for
any system of Σ equations φ, where “complete” means that for any E-unifier
σ of φ there is a τ P Unif Epφq and a substitution ρ such that σ �E τρ, where
�E here means that for any variable x we have xσ �E xτρ. The algorithm is
finitary if it always terminates with a finite set Unif Epφq for any φ.

Given a set of equations B used for deduction modulo B, a preregular OS
signature Σ is called B-preregular1 iff for each u � v P B and variable special-
ization ρ, lspuρq � lspvρq.

In the above logical notions the lack of predicate symbols is only apparent :
full order-sorted first-order logic can be reduced to order-sorted algebra and
equational formulas. The essential idea is to view a predicate ppx1:s1, . . . , xn:snq
as a function symbol p : s1 . . . sn Ñ Pred , with Pred , a new sort having a

1 When the axioms B consist of a combination of associativity, commutativity, and
(left and/or right) identity axioms, we can decompose B into the disjoint union
B � B0 Z U , where B0 are associativity and/or commutativity axioms, and U are
left and/or right identity axioms. The equations in U , of the general form fpe, xq � x
and/or fpx, eq � x, can be oriented as rewrite rules RpUq of the form fpe, xq Ñ x
and/or fpx, eq Ñ x to be applied modulo B0. The B-preregularity notion can then
be broadened by requiring only that: (i) Σ is preregular; (ii) Σ is B0-preregular in
the standard sense that lspuρq � lspvρq for all u � v P B0 and sort specializations
ρ; and (iii) the rules RpUq are sort-decreasing in the sense of Definition 1. Maude
automatically checks B-preregularity of an OS signature Σ in this broader sense [8].

Metalevel Algorithms For Variant Satisfiability 5

constant tt . An atomic formula ppt1, . . . , tnq is then expressed as the equation
ppt1, . . . , tnq � tt . We refer the reader to [27, 28] for a detailed account of this
reduction of predicate symbols to function symbols.

Recall the notation for term positions, subterms, and term replacement from
[14]: (i) positions in a term viewed as a tree are marked by strings p P N�
specifying a path from the root, (ii) t|p denotes the subterm of term t at position
p, and (iii) trusp denotes the result of replacing subterm t|p at position p by u.

Definition 1. A rewrite theory is a triple R � pΣ,B,Rq with pΣ,Bq an order-
sorted equational theory and R a set of Σ-rewrite rules, i.e., sequents l Ñ r,
with l, r P TΣpXqrss for some rss P pS. In what follows it is always assumed that:

1. For each lÑ r P R, l R X and varsprq � varsplq.
2. Each rule l Ñ r P R is sort-decreasing, i.e., for each variable specialization

ρ, lsplρq ¥ lsprρq.
3. Σ is B-preregular (if B � B0 Z U , in the broader sense of Footnote 1).
4. Each equation u � v P B is regular, i.e., varspuq � varspvq, and linear, i.e.,

there are no repeated variables in u, and no repeated variables in v.

The one-step R,B-rewrite relation t ÑR,B t1, holds between t, t1 P TΣpXqrss,

rss P pS, iff there is a rewrite rule l Ñ r P R, a substitution σ P rXÑTΣpXqs,
and a term position p in t such that t|p �B lσ, and t1 � trrσsp. Note that, by
assumptions (2)–(3) above, trrσsp is always a well-formed Σ-term.

R is called: (i) terminating iff the relation ÑR,B is well-founded; (ii) strictly
B-coherent [26] iff whenever u ÑR,B v and u �B u1 there is a v1 such that
u1 ÑR,B v1 and v �B v1; (iii) confluent iff u Ñ�

R,B v1 and u Ñ�
R,B v2 imply

that there are w1, w2 such that v1 Ñ�
R,B w1, v2 Ñ�

R,B w2, and w1 �B w2 (where
Ñ�
R,B denotes the reflexive-transitive closure of ÑR,B); and (iv) convergent if

(i)–(iii) hold. If R is convergent, for each Σ-term t there is a term u such that
t Ñ�

R,B u and pEvq u ÑR,B v. We then write u � t!R,B, and call t!R,B the
R,B-normal form of t, which, by confluence, is unique up to B-equality.

Given a set E of Σ-equations, let RpEq � tuÑ v | u � v P Eu. A decompo-
sition of an order-sorted equational theory pΣ,Eq is a convergent rewrite theory
R � pΣ,B,Rq such that E � E0 Z B and R � RpE0q. The key property of a
decomposition is the following:

Theorem 2. (Church-Rosser Theorem) [22, 26] Let R � pΣ,B,Rq be a decom-
position of pΣ,Eq. Then we have an equivalence:

E $ u � v ô u!R,B �B v!R,B .

If R � pΣ,B,Rq is a decomposition of pΣ,Eq, and X an S-sorted set of
variables, the canonical term algebra CRpXq has CRpXqs � trt!R,BsB | t P
TΣpXqsu, and interprets each f : s1 . . . sn Ñ s as the function CRpXqf :
pru1sB , . . . , runsBq ÞÑ rfpu1, . . . , unq!R,BsB . By the Church-Rosser Theorem we
then have an isomorphism h : TΣ{EpXq � CRpXq, where h : rtsE ÞÑ rt!R,BsB . In
particular, when X is the empty family of variables, the canonical term algebra

6 S. Skeirik and J. Meseguer

CR is an initial algebra, and is the most intuitive possible model for TΣ{E as an
algebra of values computed by R,B-simplification.

Quite often, the signature Σ on which TΣ{E is defined has a natural decom-
position as a disjoint union Σ � Ω Z ∆, where the elements of CR, that is,
the values computed by R,B-simplification, are Ω-terms, whereas the function
symbols f P ∆ are viewed as defined functions which are evaluated away by
R,B-simplification. Ω (with same poset of sorts as Σ) is then called a construc-
tor subsignature of Σ. Call a decomposition R � pΣ,B,Rq of pΣ,Eq sufficiently
complete with respect to the constructor subsignature Ω iff for each t P TΣ we
have: (i) t!R,B P TΩ , and (ii) if u P TΩ and u �B v, then v P TΩ . This en-
sures that for each rusB P CR we have rusB � TΩ . Of course, we want Ω as
small as possible with these properties. In Example 1 below, Ω � tJ,Ku and
∆ � t ^ , _ u. Tools based on tree automata [11], equational tree automata
[21], or narrowing [20], can be used to automatically check sufficient completeness
of a decomposition R with respect to constructors Ω under some assumptions.

Sufficient completeness is closely related to the notion of a protecting theory
inclusion.

Definition 2. An equational theory pΣ,Eq protects another theory pΩ,EΩq iff
pΩ,EΩq � pΣ,Eq and the unique Ω-homomorphism h : TΩ{EΩ Ñ TΣ{E |Ω is an
isomorphism h : TΩ{EΩ � TΣ{E |Ω.

A decomposition R � pΣ,B,Rq protects another decomposition R0 � pΣ0, B0, R0q
iff R0 � R, i.e., Σ0 � Σ, B0 � B, and R0 � R, and for all t, t1 P TΣ0

pXq
we have: (i) t �B0

t1 ô t �B t1, (ii) t � t!R0,B0
ô t � t!R,B, and (iii)

CR0
� CR|Σ0

.
RΩ � pΩ,BΩ , RΩq is a constructor decomposition of R � pΣ,B,Rq iff R

protects RΩ and Σ and Ω have the same poset of sorts, so that by (iii) above R
is sufficiently complete with respect to Ω. Furthermore, Ω is called a subsignature
of free constructors modulo BΩ iff RΩ � H, so that CR0 � TΩ{BΩ .

3 Variants and Variant Satisfiability

The notion of variant answers two questions: (i) how can we best describe sym-
bolically the elements of CRpXq that are reduced substitution instances of a given
pattern term t? and (ii) when is such a symbolic description finite?

Definition 3. Given a decomposition R � pΣ,B,Rq of an OS equational theory
pΣ,Eq and a Σ-term t, a variant2 [13, 18] of t is a pair pu, θq such that: (i)
u �B ptθq!R,B, (ii) if x R varsptq, then xθ � x, and (iii) θ � θ!R,B, that is,
xθ � pxθq!R,B for all variables x. pu, θq is called a ground variant iff u P TΣ.
Note that if pu, θq is a ground variant of some t, then rusB P CR. Given variants
pu, θq and pv, γq of t, pu, θq is called more general than pv, γq, denoted pu, θq �R,B
pv, γq, iff there is a substitution ρ such that: (i) θρ �B γ, and (ii) uρ �B v. Let

2 For a discussion of similar but not exactly equivalent versions of the variant notion
see [7]. Here we follow the formulation in [18].

Metalevel Algorithms For Variant Satisfiability 7

JtKR,B � tpui, θiq | i P Iu denote a most general complete set of variants of t,
that is, a set of variants such that: (i) for any variant pv, γq of t there is an
i P I, such that pui, θiq �R,B pv, γq; and (ii) for i, j P I, i �� j ñ ppui, θiq �R,B
puj , θjq ^ puj , θjq �R,B pui, θiqq. A decomposition R � pΣ,B,Rq of pΣ,Eq has
the finite variant property [13] (FVP) iff for each Σ-term t there is a finite most
general complete set of variants JtKR,B � tpu1, θ1q, . . . , pun, θnqu.

If B has a finitary unification algorithm, the folding variant narrowing strat-
egy described in [18] provides an effective method to generate JtKR,B . Further-
more, JtKR,B is finite for each t, so that the strategy terminates iff R is FVP.

Example 1. Let B � pΣ,B,Rq with Σ having a single sort, say Bool , constants
J,K, and binary operators ^ and _ , B the associativity and commutativity
(AC) axioms for both ^ and _ , and R the rules: x^ J Ñ x, x^ K Ñ K,
x _ K Ñ x, and x ^ J Ñ J. Then B is FVP. For example, Jx ^ yKR,B �
tpx^ y, idq, py, tx ÞÑ Juq, px, ty ÞÑ Juq, pK, tx ÞÑ Kuq, pK, ty ÞÑ Kuqu.

FVP is a semi-decidable property [7], which can be easily verified (when
it holds) by checking, using folding variant narrowing, that for each function
symbol f the term fpx1, . . . , xnq, with the sorts of the x1, . . . , xn those of f , has
a finite number of most general variants.

Folding variant narrowing provides also a method for generating a complete
set of E-unifiers when pΣ,Eq has a decomposition R � pΣ,B,Rq with B having
a finitary B-unification algorithm [18]. To express systems of equations, say,
u1 � v1 ^ . . . ^ un � vn, as terms, we can extend Σ to a signature Σ^ by
adding:

1. for each connected component rss that does not already have a top element,
a fresh new sort Jrss with Jrss ¡ s1 for each s1 P rss. In this way we obtain
a (possibly extended) poset of sorts pSJ,¥q;

2. fresh new sorts Lit and Conj with a subsort inclusion Lit Conj , with a
binary conjunction operator ^ : Lit Conj Ñ Conj , and

3. for each connected component rss P xSJ with top sort Jrss, binary operators
� : Jrss Jrss Ñ Lit and �� : Jrss Jrss Ñ Lit .

Theorem 3. [28] Under the above assumptions on R, let φ � u1 � v1 ^ . . . ^
un � vn be a system of Σ-equations viewed as a Σ^-term of sort Conj . Then

tθγ | pφ1, θq P JφKR,B ^ γ P Unif Bpφ
1q ^ pφ1γ, θγq is a variant of φu

is a complete set of E-unifiers for φ, where Unif Bpφ
1q denotes a complete set

of most general B-unifiers for each variant φ1 � u11 � v11 ^ . . . ^ u1n � v1n.

Since if R � pΣ,B,Rq is FVP, then R^ � pΣ^, B,Rq is also FVP, Theo-
rem 3 shows that if a finitary B-unification algorithm exists and R is an FVP
decomposition of pΣ,Eq, then E has a finitary E-unification algorithm.

The key question asked and answered in [27, 28] is: given an FVP decom-
position R � pΣ,B,Rq of an equational theory pΣ,Eq, under what condi-
tions is satisfiability of QF equational Σ-formulas in the canonical term alge-
bra CR decidable? It turns out that: (i) R having a constructor decomposition

8 S. Skeirik and J. Meseguer

RΩ � pΩ,BΩ , RΩq, and (ii) the associated notions of constructor variant and
constructor unifier [28] play a crucial role in answering this question.

Definition 4. Let R � pΣ,B,Rq be a decomposition of pΣ,Eq, and let RΩ �
pΩ,BΩ , RΩq be a constructor decomposition of R. Then an R,B-variant pu, θq
of a Σ-term t is called a constructor R,B-variant of t iff u P TΩpXq.

Suppose, furthermore, that B has a finitary B-unification algorithm, so that,
given a unification problem φ � u1 � v1 ^ . . . ^ un � vn, Theorem 3 allows us
to generate the complete set of E-unifiers

tθγ | pφ1, θq P JφKR,B ^ γ P Unif Bpφ
1q ^ pφ1γ, θγq is a variant of φu

Then a constructor E-unifier3 of φ is either: (1) a unifier θγ in the above set
with φ1γ P TΩ^pXq; or otherwise, (2) a unifier θγα such that: (i) θγ belongs the
above set, (ii) α is a substitution of the variables in ranpθγq such that φ1γα P
TΩ^pXq, and (iii) pφ1γα, θγαq is a variant of φ. mguΩRpφq denotes a set of most
general constructor E-unifiers of φ, i.e., for any constructor E-unifier µ of φ
there is another one η P mguΩRpφq and a substitution ν such that µ �B ην.

Note that if pv, δq is a ground variant of t, then rvsB P CR, so that v is
an Ω-term. Therefore, any ground variant pv, δq of t is “covered” by some con-
structor variant pu, θq of t, i.e., pu, θq �R,B pv, δq. If pΣ,Eq has a decomposition
R � pΣ,B,Rq, B has a finitary B-unification algorithm and we are only inter-
ested in characterizing the ground solutions of an equation in the initial algebra
TΣ{E , only constructor E-unifiers are needed, since they completely cover all
such solutions. Likewise, if we are only interested in unifiability of a system of
equations only constructor E-unifiers are needed.

Theorem 4. [27, 28] Let pΣ,Eq have a decomposition R � pΣ,B,Rq with B
having a finitary B-unification algorithm. Then, for each system of Σ-equations
φ � u1 � v1 ^ . . . ^ un � vn, where Y � varspφq, we have:

1. (Completeness for Ground Unifiers). If δ P rYÑTΣs is a ground E-unifier
of φ, then there is a constructor E-unifier η P mguΩRpφq and a substitution
β such that δ �E ηβ, i.e., xδ �E xηβ for each variable x P Y .

2. (Unifiability). TΣ{E |ù pDY q φ iff φ has a constructor E-unifier.

Given an OS equational theory pΣ,Eq, call a Σ-equality u � v E-trivial iff
u �E v, and a Σ-disequality u �� v E-consistent iff u ��E v. Likewise, call a
conjunction

�
D of Σ-disequalities E-consistent iff each u �� v in D is so.

Theorem 4 is a key step to find conditions for the decidable satisfiability of
QF equational Σ-formulas in CR for R � pΣ,B,Rq an FVP decomposition of
pΣ,Eq, where B has a finitary B-unification algorithm and R has a constructor
decomposition RΩ � pΩ,BΩ , RΩq. The key idea is to reduce the problem to
one of satisfiability of a conjunction of Ω-disequalities in the simpler canonical
term algebra CRΩ

. By CR|Ω � CRΩ
, Theorem 4, and the Descent Theorems in

[27, 28] (see [27, 28] for full details), we can apply the following algorithm to a
conjunction of literals φ �

�
G ^

�
D, with G equations and D disequations:

3 [27, 28] give examples of constructor variants and constructor unifiers.

Metalevel Algorithms For Variant Satisfiability 9

1. Thanks to Theorem 4 we need only compute the constructor E-unifiers
mguΩRp

�
Gq, and reduce to the case of deciding the satisfiability of some

conjunction of disequalities p
�
Dαq!R,B , for some α P mguΩRp

�
Gq, discard-

ing any p
�
Dαq!R,B containing a B-inconsistent disequality.

2. For each remaining p
�
Dαq!R,B we can then compute a finite, complete set of

most general R,B-variants Jp
�
Dαq!R,BKR,B by folding variant narrowing,

and obtain for each of them its BΩ-consistent constructor variants
�
D1.

3. Then by the Descent Theorems in [27, 28], φ will be satisfiable in CR iff
�
D1

is satisfiable in CRΩ
for some such

�
D1 and some such α.

Therefore, the method hinges upon being able to decide when a conjunction
of Ω-disequalities

�
D1 is satisfiable in CRΩ

. This is decidable if RΩ is the
decomposition of an OS-compact theory, which generalizes the notion of compact
theory in [12]:

Definition 5. [27, 28] An equational theory pΣ,Eq is called OS-compact iff:
(i) for each sort s in Σ we can effectively determine whether TΣ{E,s is finite
or infinite, and, if finite, can effectively compute a representative ground term
repprusq P rus for each rus P TΣ{E,s (ii) �E is decidable and E has a finitary
unification algorithm; and (iii) any E-consistent finite conjunction

�
D of Σ-

disequalities whose variables all have infinite sorts is satisfiable in TΣ{E.

The reason why satisfiability of a conjunction of disequalities in the initial
algebra of an OS-compact theory is decidable [27, 28] is fairly obvious: by (iii) it
is decidable when all variables have infinite sorts; and we can always reduce to a
disjunction of formulas in that case by instantiating each variable with a finite
sort s by all the possible representatives in TΣ{E,s. Therefore we have:

Corollary 1. For R � pΣ,B,Rq an FVP decomposition of pΣ,Eq, where B
has a finitary B-unification algorithm and R has an OS-compact constructor
decomposition RΩ, satisfiability of QF equational Σ-formulas in CR is decidable.

The papers [27, 28] contain many examples of commonly used theories that
have FVP specifications whose constructor decompositions are OS-compact.
This can be established by one of the two methods discussed below.

A first method to show OS-compactness is both very simple and widely appli-
cable to constructor decompositions of FVP theories. It applies to OS equational
theories of the form pΩ,ACCU q, where ACCU stands for any combination of
associativity and/or commutativity and/or left- or right-identity axioms, except
combinations where the same operator is associative but not commutative. We
also assume that if any typing for a binary operator f in a subsort-polymorphic

family f
rss rss
rss satisfies some axioms in ACCU , then any other typing in f

rss rss
rss

satisfies the same axioms. The following theorem generalizes to the order-sorted
and ACCU case a similar result in [12] for the unsorted and AC case:

Theorem 5. [27, 28] Under the above assumptions pΩ,ACCU q is OS-compact.
Furthermore, satisfiability of QF Ω-formulas in TΩ{ACCU is decidable.

10 S. Skeirik and J. Meseguer

The range of FVP theories whose initial algebras have decidable QF satisfi-
ability is greatly increased by a second method of satisfiability-preserving FVP
parameterized theories. For our present purposes it suffices to summarize the ba-
sic general facts and assumptions for the case of FVP parameterized data types
with a single parameter X. That is, we can focus on parameterized FVP theories
of the form RrXs � pR, Xq, where R � pΣ,B,Rq is an FVP decomposition of
an OS equational theory pΣ,Eq, and X is a sort in Σ (called the parameter sort)
such that: (i) is empty, i.e., TΣ,X � H; and (ii) X is a minimal element in the
sort order, i.e., there is no other sort s1 with s1 X.

Consider an FVP decomposition G � pΣ1, B1, R1q of a finitary OS equa-
tional theory pΣ1, E1q, which we can assume without loss of generality is dis-
joint from pΣ,Eq, and additionally let s be a sort in Σ1. Then the instantiation
RrG, X ÞÑ ss � pΣrΣ1, X ÞÑ ss, BYB1, RYR1q is the decomposition of a theory
pΣrΣ1, X ÞÑ ss, E Y E1q, extending pΣ1, E1q, where the signature ΣrΣ1, X ÞÑ ss
is defined as the union ΣrX ÞÑ ssYΣ1, with ΣrX ÞÑ ss just like Σ, except for X
renamed to s. Its set of sorts is pS�tXuqZS1, and the poset ordering combines
those of ΣrX ÞÑ ss and Σ1. Furthermore, RrG, X ÞÑ ss is also FVP under mild
assumptions [27].

Suppose B, B1 and B Y B1 have finitary unification algorithms and both
RrXs � pR, Xq and G protect, respectively, the two constructor theories, say
RΩrXs � pΩ,BΩ , RΩq and GΩ1 � pΩ1, BΩ1 , RΩ1q. Then RrG, X ÞÑ ss will protect
RΩrGΩ1 , X ÞÑ ss. Suppose, further, that BΩ , BΩ1 , and BΩ Y BΩ1 have decid-
able equality. The general satisfiability-preserving method of interest is then as
follows: (i) assuming that GΩ1 is the decomposition of an OS-compact theory,
then (ii) under some assumptions about the cardinality of the sort s, prove the
OS-compactness of RΩrGΩ1 , X ÞÑ ss. It then follows from our earlier reduction
of satisfiability in initial FVP algebras to their constructor decompositions that
satisfiability of QF formulas in the initial model of the instantiation RrG, X ÞÑ ss
is decidable.

In [27] the following parameterized data types have been proved satisfiability-
preserving following the just-described pattern of proof: (i) LrXs, parameterized
lists, which is just an example illustrating the general case of any constructor-
selector-based [29] parameterized data type; (ii) LcrXs, parameterized compact
lists, where any two identical contiguous list elements are identified [16, 15]; (iii)
MrXs, parameterized multisets; (iv) SrXs, parameterized sets; and (v) HrXs,
parameterized hereditarily finite sets.

4 Metalevel Algorithms for Variant Satisfiability

For R � pΣ,B,Rq an FVP decomposition of pΣ,Eq, where B has a finitary B-
unification algorithm and R has a constructor decomposition RΩ , the issue of the
decidable satisfiability of QF equational Σ-formulas in CR has been condensed
in Section 3 to two key sub-issues: (i) steps (1)–(3) in the high-level algorithm,
which reduce satisfiability of a conjunction of Σ-literals in CR to satisfiability

Metalevel Algorithms For Variant Satisfiability 11

of a conjunction of Ω-disequalities in CRΩ
; and (ii) decidable satisfiability of

conjunctions of Ω-disequalities in CRΩ
when RΩ is OS-compact (Corollary 1).

At a theoretical level this gives the skeleton of a high-level algorithm for vari-
ant satisfiability. But at a concrete, algorithmic level several important questions,
essential for having an actual satisfiability algorithm, remain unresolved, includ-
ing: (1) how can we automatically check that the constructor decomposition RΩ

is OS-compact using the two methods for OS-compactness outlined in Section
3? (2) how can we compute constructor variants and constructor unifiers? (3)
how can we prove that the auxiliary algorithms answering questions (1) and (2)
are correct? and (4) how can we implement both the main algorithm and the
auxiliary algorithms in a correctness-preserving manner?

Let us begin with question (3). The algorithm skeleton sketched in Section 3
manipulates metalevel entities like operators, signatures, terms, equations, and
theories. Likewise, the checks for OS-compactness and the computation of con-
structor variants and constructor unifiers (questions (1)–(2)) are problems fully
expressible in terms of such metalevel entities. Therefore, both for mathematical
clarity and for simplicity of the needed correctness proofs, the definitions of the
auxiliary algorithms should be carried out at the metalevel of rewriting logic.

This brings us to question (4), which has a simple answer: since rewriting
logic is reflective [10], once we have defined and proved correct at the metalevel
the auxiliary algorithms solving questions (1) and (2), we can derive correct
implementations for them by meta-representing them at the logic’s object level
as equational or rewrite theories. In fact, this can be carried out in Maude by
defining suitable meta-level theories extending the META-LEVEL module [8].

The previous paragraphs lead us to the main contributions of the present pa-
per. We answer questions (1) and part of (3) by defining and proving correct at
the metalevel a method to check OS-compactness, including: (a) checking which
sorts s satisfy |TΩ{BΩ ,s| ℵ0, and (b) computing for each such s a unique rep-
resentative repprtsBΩ q for each rtsBΩ P TΩ{BΩ ,s. We answer question (2) and the
other part of (3) by defining and proving correct at the meta-level a method to
compute constructor unifiers and constructor variants. And we answer question
(4) by meta-representing both the auxiliary algorithms and the main algorithm
(already proved correct at the meta-level in [27, 28]) in Section 5.

To help guide the discussion, the reader may refer to the tree diagram in the
Introduction, which describes the dependencies among different subalgorithms.
We first present a high-level description of the algorithms with some details omit-
ted for readability; all remaining details, together with full proofs of correctness,
can be found in the appendices.

4.1 OS-Compact Satisfiability

EΩ-consistency of a conjunction of Ω-disequalities
�
D1 in a constructor decom-

position RΩ � pΩ,BΩ , RΩq is easy to check: we may assume
�
D1 in RΩ , BΩ-

normal form and just need to check that u ��BΩ v for each u �� v in
�
D1.

Checking that the constructor subtheory RΩ of R is OS-compact breaks into
two cases: (1) when R is an unparameterized theory ; and (2) when R is the

12 S. Skeirik and J. Meseguer

instantiation of a possibly nested collection of satisfiability-preserving parame-
terized theories such as, for, example, sets of lists of natural numbers. In case
(2) it is enough (for the parameterized theories described in Section 3) to check
that: (i) the unparameterized theory G in the innermost instantiation (in our ex-
ample the theory N� of naturals with addition) is OS-compact, and the chosen
sort (in our example the sort Nat) is infinite; and (ii) that the sorts chosen to
instantiate each remaining parameter is the principal sort of the parameterized
module immediately below in the nesting. In our example this is just checking
that the parameter sort X for the set parameterized module is instantiated to
the principal sort, namely List , of the list parameterized module immediately
below. In this way, checking OS-compactness of RΩ in the, nested, parameter-
ized case is reduced to checking OS-compactness of the unparameterized inner
argument, plus a check of an infinite sort. All checks for the unparameterized
case (1), including the two needed in case (2), are described below.

OS-Compactness Check (Unparameterized Case). As shown in Theorem
5, a sufficient condition for an unparameterized constructor decomposition RΩ �
pΩ,BΩ , RΩq to be OS-compact is for RΩ to be of the form RΩ � pΩ,ACCU ,Hq.
Thus, a sufficient condition is to require: (1) BΩ to be a set of ACCU axioms,
and (2) Ω to be a signature of free constructors modulo BΩ . Fortunately, both of
these subgoals are quite simple to check. Goal (1) can be solved by iterating over
each axiom and applying a case analysis against its structure. Goal (2) can be
solved by an application of propositional tree automata (PTA). In particular, if
the rules R in R are linear and unconditional, then constructor freeness modulo
B is translatable into a PTA emptiness problem; see [32] for further details.

Finite Sort Classification. Another needed algorithm takes as input a signa-
ture Ω and a sort s and checks if |TΩ{BΩ ,s| ℵ0. We solve this problem in two
phases: (1) we devise an algorithm to check |TΩ,s| ℵ0 (2) we use this as a sub-
routine in an approximate algorithm to check |TΩ{BΩ ,s| ℵ0 when BΩ � ACCU .
If the approximate algorithm fails to classify some s as either infinite or finite,
s returned to the user as a proof obligation (Appendix C, Corollary 7).

If Ω is finite and has non-empty sorts, we show that |TΩ,s| � ℵ0 iff there
exists a cycle in the relation p q � S2 reachable from s where s s1 iff the
formula Df : s1 � � � sn Ñ s2 P Ω Di P Nrs2 ¤ s ^ s ¤ sis _ rs1 ss holds.
We construct a rewrite theory RF over S such that s ÑRF s1 iff s s1. If
cypSq � ts P S | s Ñ�

RF
su, then s Ñ�

RF
s1 with s1 P cypSq implies |TΩ,s| � ℵ0.

Then
�
s1PcypS�Hq

RF $ s Ñ� s1 holds iff there is a cycle in the relation p q
reachable from s (Appendix C, Theorem 10).

We now lift the algorithm above to phase (2). We can show that for ACC
axioms BΩ there is an exact correspondence |TΩ{BΩ ,s| ℵ0 iff |TΩ,s| ℵ0. The
tricky case is when BΩ contains unit axioms, since they may break this happy
correspondence. For example, consider the unsorted signature Ω � p0, � q
where 0 is a unit element for � . For the ACCU case, shows two simple checks

Metalevel Algorithms For Variant Satisfiability 13

that apply in most cases. Failing that, the classification of sort s is returned to
the user as a proof obligation (Appendix C, Lemmas 10, 11, and 12).

Finite Sort Representative Generation. Here we require a method to do
two things: (1) when |TΩ{BΩ ,s| ℵ0, we can compute each rtsBΩ P TΩ{BΩ ,s
(2) for each such rtsBΩ , we can compute a unique representative repprtsBΩ q. We
first show how to generate TΩ,s. Recall that any order-sorted signature Ω can be
viewed as a tree automaton such that the tree automaton accepts a term t in final
state s iff t P TΩ,s. Note also that tree automata are very simple ground rewrite
theories. Let RP be the ground rewrite rules for Ω’s tree automaton over TΩYS ,
so that t P TΩ,s iff t Ñ�

RP
s. Let RG � R�1

P then TΩ,s � tt P TΩ | s Ñ!
RG

tu
(Appendix C, Corollary 6). Furthermore, if |TΩ,s| ℵ0 and Ω has no empty
sorts, this process will always terminate. Note that we can apply the rules RG
modulo BΩ . Then the set ReppTΩ{BΩ ,sq � trepprtsq | rts P TΩ{BΩ ,su is exactly

the set ReppTΩ{BΩ ,sq � tt | sÑ
!
RG,BΩ

tu.

4.2 Constructor Variants and Constructor Unifiers

We first show how to compute a set of most general constructor variants of a
term t (i.e. a set of constructor variants JtKΩR,B such that for any constructor

variant pt1, θq, we have Dpt2, ψq P JtKΩR,Brpt
2, ψq �R,B pt1, φqs) and then show

how to use this method to compute a set of most general constructor unifiers
mguΩRpφq. Recall that a constructor variant is just an variant pt, θq such that
t P TΩpXq. Thus, JtKΩR,B can be computed in two steps: (1) computing a set
of most general variants JtKR,B (2) for each most general variant pt1, θq, com-
pute the set of its most general constructor instances, i.e. a set of instances
mgciBpt

1q � tt1η1, � � � , t1ηnu where for any other instance t1α, there exists a sub-
stitution γ and ηi with α �B ηiγ. Note that (1) can be solved via folding variant
narrowing, so we tackle (2) by a reduction to a B-unification problem via a
signature transformation Σ ÞÑ Σc. In this transformed signature, the instances
mgciBpt

1q correspond exactly to the solutions of a single B-unification problem.

The signature transformation Σ ÞÑ Σc splits into two steps: (i) we extend
the sort poset pS, q of Σ and Ω and (ii) likewise extend the operator sets F
and FΩ , as specified by the definitions below, respectively. Recall we assume Σ
(and thus Ω) are finite; otherwise these transformations would not be effective.

Definition 6. A constructor sort refinement of pS, q is defined by the follow-
ing: (a) a set Sc � S Z SÓ with c : S Ñ SÓ a bijection, (b) a relation p cq the
smallest strict order where: (i) @s, s1 P S rs s1 ô rs c s1 ^ cpsq c cps1qss and
(ii) @s P S rcpsq c ss, and (c) functions p
q : Sc Ñ S and p
q : Sc Ñ SÓ defined
by s
 � s if s P S else c�1psq and s
 � s if s P SÓ else cpsq.

We let p cq also ambiguously denote its extension to strings pScq�. Similarly,
let p
q and p
q ambiguously denote their extensions to pScq� and PpScq.

14 S. Skeirik and J. Meseguer

Definition 7. Given Σ � ppS, q, F q and Ω � ppS, q, FΩq where Ω � Σ and
pSc, c, p
q, p
qq is a constructor sort refinement of pS, q, we define signatures

ΩÓ � ppSc, cq, F Ó
Ωq and Σc � ppSc, cq, F cq such that F c � F Z F Ó

Ω and F Ó
Ω �

tf : w
 Ñ s
 | f : w Ñ s P FΩu. Then let XÓ � tXsusPSÓ and Xc � X ZXÓ.

In particular, we refer to signatures ΣcpXcq and ΩÓpXcq as the constructor
sort refinement ofΣpXq andΩpXq. It is in these signatures where we will perform
unification. Also note that p
q and p
q extend naturally to signature morphisms
p
q : Σc Ñ Σ and p
q : Ω Ñ ΩÓ. On ground terms p
q and p
q are the identity,
but variables x P Xc are mapped either into X or XÓ respectively. They further
extend into substitution mappings where px, tq P θ is mapped into px
, t
q P θ

and px
, t
q P θ
 respectively.
In practice, for our unification algorithm to be efficiently used modulo a

set of rewrite rules R, we want our transformed signature to be sensible and
B-preregular. In general, sensibility is preserved, but preregularity (and thus B-
preregularity) is not. Thus, we give a relatively mild condition which ensures B-
preregularity is preserved. IfΩ � Σ, then we writeΩ Σ and sayΩ is preregular
below Σ iff Ω and Σ are preregular and @t P TΣrt P TΩ ñ lsΩptq � lsΣptqs.
Intuitively this means whenever a constructor typing is possible for a term, we
need only examine its constructor typings to find its least possible typing.

Corollary 3. Let R � pΣ,B,Rq be convergent with constructor decomposition
RΩ � pΩ,BΩ , RΩq and Ω Σ. Then Σc and ΩÓ are sensible and B-preregular.

Now we can derive the most general constructor instances via unification.

Theorem 8. Suppose ΣpXq and ΩpXq are sensible and B-preregular, Ω Σ,
and B respects constructors. Then (a) @t P TΣpXqs @t1 P TΩpXqs1 with s � s1

and x R varsptq, tα �B t1 iff there are η P mguBpt � x : cps1qq and θ such that
η
θ|varsptq �B α where α P rvarsptq Ñ TΩpXqs and θ P rX Ñ TΩpXqs and
(b) the set of most general constructor instances of t modulo B is defined by
mgciΩBptq � ttpη

q | η P mguBpt � x : lsΣpXqptq
qu.

Now that we can obtain constructor instances, we just need to show how to
compute constructor variants. But this is now straightforward, since we already
know we can compute every most general variant by folding variant narrowing.

Corollary 4. Let pΣ,B,Rq be convergent and protect constructor decomposition
pΩ,BΩ ,Hq and Ω Σ. The most general constructor variants of t P TΣpXq are
JtKΩR,B � tpt

1η
, θη
q | pt1, θq P JtKR,B ^ η P mguBpt1, x : lsΣpXqpt1q
qu.

The reduction of constructor unifiers to constructor variants is simple. Recall
any unification problem φ is a Σ^-term φ P TΣ^pXqConj . Let tαiuiPI denote the
finite set of most general R,B-variant unifiers of φ obtained as explained in
Theorem 3. Then the set of most general constructor unifiers of φ is the set
tαiη
 | η P mguBppφαiq!R,B , x : Conj
qu.

We finish with an example of constructor variants and unifiers, which illus-
trates some issues relating to subsort-overloading that need to be considered.

Metalevel Algorithms For Variant Satisfiability 15

Consider the theory Int of integers with addition In our example, we have four
sorts: Int, Nat, NzNat, and NzNeg where NzNat Nat Int and NzNeg Int.
There are five constructors � : NzNat NzNat Ñ NzNat, � : Nat Nat Ñ Nat,
0 :Ñ Nat, 1 :Ñ NzNat, and � : NzNat Ñ NzNeg, and one defined operator
� : Int Int Ñ Int, where the addition operators all satisfy associativity, com-

mutativity, and identity axioms with unit element 0. Let n,m : NzNat and i : Int.
Then the operators satisfy four equations: i � �pnq � �pmq � i � �pn � mq,
i� n��pnq � i, i� n��pn�mq � i��pmq, i� n�m��pnq � i�m.

Note that this theory is FVP and protects its constructor subtheory. Suppose
that using this signature we wish to compute the constructor variants of term
i�n where i : Int and n : NzNat. We start computing the most general variants
of the term i�n using finite variant narrowing and obtain four variants: i, i�n,
i��pnq, and i� n��pmq, where i : Int and n,m : NzNat.

We then construct the extended signatures according to Definition 7. Figure
1 below illustrates how this is done, where for each sort s, we let s
 denote
its lowered sort. Then, for each variant t above, we just compute and apply
substitutions mguBpt � x : lsΣpXqptq
qu. Thus, we obtain the four constructor
variants: i, k�n, 0�n, and 0��pnq where i : Int, k : Nat, and n : NzNat. Now
recall p�q is a defined operator over Int but a constructor over Nat ; therefore,
for each p�q variant, in order to obtain the corresponding constructor variants,
we instantiate subterm i : Int so the typing of the whole term lowers into Nat.

Fig. 1. Int signature Σ and its refinement Σc

5 Implementation and Example

Now we describe our implementation of the metalevel algorithms using Maude.
Thanks to the reflective nature of rewriting logic and the fact that Maude di-
rectly implements rewriting logic, we can directly represent metalevel concepts

16 S. Skeirik and J. Meseguer

in Maude as terms in a theory. In fact, such a library already exists in Maude’s
META-LEVEL module. By using META-LEVEL, we can directly write functions over
meta-level constructs to implement our algorithms. Essentially, the algorithm
follows the outline sketched in Section 4 and shown in the diagram in the In-
troduction, except that the finite sort checks for theories with axioms have not
been implemented yet. The algorithm takes as input a reflected theory M and
a formula φ �

�
G ^

�
D and returns a boolean indicating if the formula is

satisfiable in M (for more details, see Appendix D).
Let us see how our algorithm can be applied to a concrete example theory

NatList of lists of natural numbers with Presburger arithmetic. It has four
sorts: Bool, Nat, NeList, and List such that NeList List, seven constructors
0 :Ñ Nat, 1 :Ñ Nat, � : Nat Nat Ñ Nat, : : Nat List Ñ NeList,
nil :Ñ List, true :Ñ Bool, and false :Ñ Bool, and three defined operators
 : Nat Nat Ñ Bool, hd : NeList Ñ Nat, and tl : NeList Ñ List where
� satisfies associativity, commutativity, and identity axioms for element 0.

The theory has four equations: m � 1 � n ¡ n � true, n ¡ n � m � false,
hdpn : lq � n and tlpn : lq � l where n,m : Nat and l : List.

Suppose we want to show φ � @l, l1 : NeList rhdplq ¡ hdpl1q � trueñ l � l1s
is a theorem of the initial algebra of NatList. Usually, to solve equations in this
combined theory, we would need a separate solver for each subtheory and use
the Nelson-Oppen combination method to reason in the combined theory, but
here, since the theory NatList is FVP and protects an OS-compact subtheory,
we can directly reason in the combined theory. Thus, we proceed by proving the
negation of φ Dl, l1 : NeList rhdplq ¡ hdpl1q � true^l � l1s is unsatisfiable. But we
immediately find that the formula has no variant unifiers, proving unsatisfiability,
and thus, the original formula is a theorem, as claimed.

6 Conclusions and Related Work

We have presented the meta-level sub-algorithms needed to obtain a full-fledged
variant satisfiability algorithm, proved them correct, and derived a Maude re-
flective implementation. Correctness has been the main concern, but efficiency
has also been taken into account. Much work remains ahead. We plan to exper-
imentally evaluate and optimize the performance of our algorithm by means of
representative satisfiability case studies. We also plan to use the algorithm itself
in various infinite-state model checking and theorem proving applications.

The most closely-related work is [27, 28], for which it provides the first full-
fledged algorithm and implementation. Other related topics include folding vari-
ant narrowing [18], the FVP [13], and unsorted compactness [12]. Of course,
this work occurs in the larger context of decidable satisfiability algorithms and
the vast literature on SMT solving, e.g., [6, 23, 3, 5, 4, 6, 24, 1, 17], and additional
references in [27, 28]. Finally, the literature on Maude’s reflective algorithms and
tools, e.g., [9, 8] is also closely related.

Acknowledgements. Partially supported by NSF Grant CNS 13-19109.

Metalevel Algorithms For Variant Satisfiability 17

References

1. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2), 140–164 (2003)

2. Baader, F., Schulz, K.U.: Combining constraint solving. In: Constraints in Com-
putational Logics CCL’99, International Summer School. vol. 2002, pp. 104–158.
Springer LNCS (1999)

3. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability, vol. 185, chap. 26, pp. 825–885. IOS Press (February 2009)

4. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satis-
fiability in the theory of inductive data types. Journal on Satisfiability, Boolean
Modeling and Computation 3, 21–46 (2007)

5. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger,
T., Veith, H. (eds.) Handbook of Model Checking. Springer (2014), (to appear)

6. Bradley, A.R., Manna, Z.: The calculus of computation - decision procedures with
applications to verification. Springer (2007)

7. Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite vari-
ant property. Tech. rep., CS Dept. University of Illinois at Urbana-Champaign
(February 2014), available at http://hdl.handle.net/2142/47117

8. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Mart́ı-Oliet, N., Talcott,
C.: All About Maude. Springer LNCS Vol. 4350 (2007)

9. Clavel, M., Durán, F., Eker, S., Meseguer, J., Stehr, M.O.: Maude as a formal
meta-tool. In: Wing, J., Woodcock, J. (eds.) FM’99 — Formal Methods. Springer
LNCS, vol. 1709, pp. 1684–1703. Springer-Verlag (1999)

10. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic,
many-sorted equational logic, Horn logic with equality, and rewriting logic. Theo-
retical Computer Science 373, 70–91 (2007)

11. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2007), Release October, 12th 2007

12. Comon, H.: Complete axiomatizations of some quotient term algebras. Theor.
Comput. Sci. 118(2), 167–191 (1993)

13. Comon-Lundth, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties, in Proc RTA’05, Springer LNCS 3467, 294–307, 2005

14. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, Vol. B, pp. 243–320. North-Holland (1990)

15. Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for
lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3) (2008)

16. Dovier, A., Policriti, A., Rossi, G.: A uniform axiomatic view of lists, multisets,
and sets, and the relevant unification algorithms. Fundam. Inform. 36(2-3), 201–
234 (1998)

17. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding Decision Procedures to
SMT Solvers using Axioms with Triggers. Journal of Automated Reasoning (2016),
https://hal.archives-ouvertes.fr/hal-01221066, accepted for publication

18. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Algebraic and Logic Programming 81, 898–928 (2012)

19. Goguen, J., Meseguer, J.: Order-sorted algebra I. Theoretical Computer Science
105, 217–273 (1992)

18 S. Skeirik and J. Meseguer

20. Hendrix, J., Clavel, M., Meseguer, J.: A sufficient completeness reasoning tool for
partial specifications. In: Proc. RTA 2005. vol. 3467, pp. 165–174. Springer LNCS
(2005)

21. Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for lin-
ear order-sorted specifications modulo axioms. In: Automated Reasoning, Third
International Joint Conference, IJCAR 2006. pp. 151–155 (2006)

22. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM Journal of Computing 15, 1155–1194 (November 1986)

23. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series, Springer (2008)

24. Krstic, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo para-
metric theories. In: Proc. TACAS 2007. vol. 4424, pp. 602–617. Springer LNCS
(2007)

25. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Proc. WADT’97. pp. 18–61. Springer LNCS 1376 (1998)

26. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Tech. Rep.
http://hdl.handle.net/2142/50288, C.S. Department, University of Illinois at
Urbana-Champaign (August 2014)

27. Meseguer, J.: Variant-based satisfiability in initial algebras. Tech. Rep.
http://hdl.handle.net/2142/88408, University of Illinois at Urbana-Champaign
(November 2015)

28. Meseguer, J.: Variant-based satisfiability in initial algebras. In: Artho, C., Ölveczky,
P. (eds.) Proc. FTSCS 2015. pp. 1–32. Springer CCIS 596 (2016), in press.

29. Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, mul-
tiple representation and coercion problems. Information and Computation 103(1),
114–158 (1993)

30. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

31. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput.
Sci. 12, 291–302 (1980)

32. Rocha, C., Meseguer, J.: Constructors, sufficient completeness, and deadlock free-
dom of rewrite theories. In: Proc. LPAR 2010. Lecture Notes in Computer Science,
vol. 6397, pp. 594–609. Springer (2010)

33. Shostak, R.E.: Deciding combinations of theories. Journal of the ACM 31(1), 1–12
(Jan 1984)

A Constructor Variants and Unifiers: An Example

The notions of constructor variant and constructor unifier become more subtle
when, due to order-sortedness, a same subsort-polymorphic operator f has some
typings that are constructors and some other typings that are defined functions.
The following examples illustrates the issues involved.

Example 2. (Integers with Addition). The FVP decomposition Z� for integers
with addition has sorts Nat , NzNat , NzNeg , and Int , and subsorts NzNat Nat
and Nat NzNeg Int , where NzNat (resp. NzNeg) denotes the non-zero naturals
(resp. negatives). The constructor signature Ω has constants 0 of sort Nat and
1 of sort NzNat , and operators � : Nat Nat Ñ Nat , � : NzNat NzNat Ñ

Metalevel Algorithms For Variant Satisfiability 19

NzNat , and � : NzNat Ñ NzNeg . The only defined function symbol is: �
: Int Int Ñ Int , also ACU . The rewrite rules R defining � and making

pΩ,ACU,Hq an ACU -free constructor decomposition of Z� are the following
(with i a variable of sort Int , and n,m variables of sort NzNat): i�n��pnq Ñ
i, i � �pnq � �pmq Ñ i � �pn � mq, i � n � �pn � mq Ñ i � �pmq, and
i� n�m��pnq Ñ i�m.

Consider now the term x� y with x, y variables of sort Int . Then px� y, idq
with id the identity substitution is a variant, but not a constructor variant in Z�,
but there are variants that are less general than px� y, idq and are constructor
variants. The most general constructor variants less general than px� y, idq are:
(i) px, ty ÞÑ 0uq, (ii) py, tx ÞÑ 0uq, and (iii) px1 � y1, tx ÞÑ x1 :Nat , y ÞÑ y1 :Natuq.
Likewise, let φ be the equation z � x�y, with x, y, z of sort Int . Then tz ÞÑ x�yu
is a trivial Z�-unifier of φ, but not a constructor unifier. A complete set mguΩRpφq
of most general constructor Z�-unifiers of φ is given by the unifiers: (i) tz ÞÑ
x, y ÞÑ 0u, (ii) tz ÞÑ y, x ÞÑ 0u, and (iii) tz ÞÑ x1 � y1, x ÞÑ x1 :Nat , y ÞÑ y1 :Natu.

For other examples of constructor variants and constructor unifiers we refer
the reader to Examples 3–4 in [28].

B Correctness Proofs for Constructor Variant Generation

Here we design an algorithm to solve the most general constructor instance
problem and then prove our algorithm is correct. Specifically, we use a signature
transformation to reduce the most general constructor instance problem into
a B-unification problem. In the transformed signature, the instances mgciBpt

1q
correspond exactly to the solutions of a single B-unification problem. We then
use it as a subalgorithm for computing constructor variants.

We assume throughout two signatures,Σ � ppS, q, F q andΩ � ppS, q, FΩq,
with Ω � Σ and a possibly empty set of ACCU axioms B, where Ω and Σ are
sensible and B-preregular. We recall the following definitions.

Definition 6. A constructor sort refinement of pS, q is defined by the follow-
ing: (a) a set Sc � S Z SÓ with c : S Ñ SÓ a bijection, (b) a relation p cq the
smallest strict order where: (i) @s, s1 P S rs s1 ô rs c s1 ^ cpsq c cps1qss and
(ii) @s P S rcpsq c ss, and (c) functions p
q : Sc Ñ S and p
q : Sc Ñ SÓ defined
by s
 � s if s P S else c�1psq and s
 � s if s P SÓ else cpsq.

We let p cq also ambiguously denote its extension to strings of sorts pScq�.
Also, note that p q � p cq by definition and functions p
q and that p
q have
unique homomorphic extensions to free monoid homomorphisms denoted by:
p
q : pScq� Ñ S� and p
q : pScq� Ñ pSÓq�. Likewise, p
q and p
q have unique
extensions to powersets, p
q : PpScq Ñ PpSq and p
q : PpScq Ñ PpSÓq. Lastly,
p
q|pSÓq� and p
q|S� are bijective by definition and lift into poset and powerset
isomorphisms.

Definition 7. Given Σ � ppS, q, F q and Ω � ppS, q, FΩq where Ω � Σ and
pSc, c, p
q, p
qq is a constructor sort refinement of pS, q, we define:

20 S. Skeirik and J. Meseguer

1. Σ� � ppSc, cq, F q and Ω� � ppSc, cq, FΩq
2. ΣÓ � ppSc, cq, F Óq and ΩÓ � ppSc, cq, F Ó

Ωq
3. Σc � ppSc, cq, F cq and Ωc � ppSc, cq, F cΩq
4. ΩÓ

 � ppSÓ, c|SÓq, F
Ó
Ωq

where F Ó � pF {FΩq Z F Ó
Ω, F Ó

Ω � tf : w
 Ñ s
 | f : w Ñ s P FΩu, F c �
F Z F Ó

Ω, and F cΩ � FΩ Z F Ó
Ω. Similarly, we also define XÓ � tXsusPSÓ . Then

Xc � X ZXÓ.

We can summarize the definition above with the figure below:

ΣpXq Σ�pXcq ΣcpXcq ΣÓpXcq ΣÓpXÓq

ΩpXq Ω�pXcq ΩcpXcq ΩÓpXcq ΩÓpXÓq ΩÓ

pXÓq

where each arrow is a signature inclusion. The signature decorations are in-
tended to be suggestive of the transformation: Σ� extends the subsort relation;
Σc copies each constructor; ΣÓ shifts constructors below; and finally ΩÓ

 shifts
constructors below and discards sorts S by applying p
q. In this section, we will
primarily consider ΣcpXcq and ΩÓpXcq which we refer to as the constructor sort
refinements of Σ and Ω. The other signatures will be referenced as needed.

Note that p
q and p
q naturally extend into signature morphisms. The sort
mapping is either p
q or p
q. If t P TΣcpXcq, then the term mapping is given
by: (a) if t � x : s P Xc, then px : sq
 � x : ps
q and px : sq
 � x : ps
q, (b) if
t � a : Ñ s P F c, then a
 � a
 � a (c) if t � fpt1, � � �, tnq, then t
 � fpt
1, � � �, t

nq

and t
 � fpt1
 , � � �, tn
q. The term mappings p
q and p
q also naturally extend to
substitutions θ P rXc Ñ TΣcpXcqs. Then for each px, tq P θ, we have px
, t
q P θ

and px
, t
q P θ
. In particular, we note three facts: (i) p
q : ΩpXq Ñ ΩÓ

pXÓq is a

signature isomorphism with inverse p
q (ii) p
q : ΣcpXcq Ñ ΣpXq is a signature
morphism (iii) as sets of terms, TΩÓpXÓq � TΩÓ

pXÓq and TΩ � TΩÓ � TΩÓ

.

Our first goal in this section is to show that term sorting, sensibility, and
preregularity are all preserved by constructor sort refinement, i.e., refinement
in the sense that all existing sort information is preserved and only new sort
information is added. Note that we trivially have preservation of term sorts by
facts (i)-(iii) above since @s P Sc @t P TΣcpXcqsrt
 P TΣpXqs
 ^ s ¤c s
s, p
q
specializes to the identity when t P TΣpXq, and @s P Srt P TΩÓ

 ,s

ô t P TΩ,ss.

Thus, it is enough to prove preservation of sensibility and preregularity. However,
the example below shows our current assumptions are not strong enough.

Example 3. Consider sort poset pS, q � pta, bu, tpa, bquq and signatures Σ �
ppS, q, tf : a Ñ a, f : b Ñ buq and Ω � ppS, q, tf : b Ñ buq. The ctor sort
refinement pSc, cq � pS Z ta
, b
u, p qZ tpa
, aq, pb
, bq, pa
, b
q, pa
, bquq where
Σc � ppSc, cq, tf : aÑ a, f : bÑ b, f : b
 Ñ b
uq violates preregularity for sort
a
 where pa
 ¤c a^ a
 ¤c b
q but pa ¦c b
^ b
 ¦c aq even though Σ and Ω are
both preregular by construction.

Metalevel Algorithms For Variant Satisfiability 21

Note that in the previous example the violation occurred when a construc-
tor had a subsort-overloaded defined operator below. However, just restricting
subsort-overloading does not fix the problem.

Example 4. Let pS, q � pta, b, cu, tpa, bq, pa, cquq, Σ � ppS, q, tf : b Ñ a,
f : cÑ cuq, and Ω � ppS, q, tf : c Ñ cuq. Then pSc, cq � pS Z ta
, b
u,
p qZtpa
, aq, pb
, bq, pc
, cq, pa
, b
q, pa
, c
q, pa
, bq, pa
, cquq. But now note Σc �
ppSc, cq, tf : b Ñ a, f : c Ñ c, f : c
 Ñ c
uq violates preregularity for sort a

where pa
 ¤c b^ a
 ¤c c
q holds but pa ¦c c
 ^ c
 ¦c aq.

Essentially, the invariant violated by both examples was that Ω was not
preregular below Σ, in the sense that, given a symbol and arity with a constructor
typing, it’s minimal typing was not a constructor. In order to formally specify
this invariant, we will need some auxiliary notation.

Let Σ � ppS, q, F q be an arbitrary signature and pP,�q an arbitrary poset.
Let tyΣ : TΣ Ñ F be defined by the two equations tyΣpcq � tc :Ñ s P F u
and tyΣpfpt1, � � �, tnqq � tf : s1 � � � sn Ñ s P F | ti P TΣsi u. Also let tyΣ
denote the function tyΣpf, wq � tf : w1 Ñ s P F | w ¤ w1u. Further let
min� : PpP q Ñ P Z tHu be min�pIq �

�
I if pD

�
Iq ^

�
I P I else H where�

I denotes the greatest lower bound of I in pP,�q if it exists.

Definition 8. Let Σ � ppS, q, F q have subsignature Ω � ppS, q, FΩq. Then
Ω is preregular below Σ (written Ω Σ) iff Ω and Σ are preregular and for
any f we have @w P S�rtyΩpf, wq � H ñ min ptyΣpf, wqq P tyΩpf, wqs where
pF, q is the poset where f : w Ñ s g : w1 Ñ s1 ô s s1.

We now prove that the constructor sort refinements ΩÓpXcq and ΣcpXcq
preserve sensibility and preregularity iff Ω and Σ are sensible and Ω Σ. Note
that, by definition, for any signature Σ, we have lsΣptq � min ptyΣptqq for the
poset pF, q and to prove Σ is preregular it is enough to show @t P TΣrlsΣptq �
Hs. To complete the proof, we will need three lemmas. To preserve the logical
flow of the argument, we will state them here as assumptions to be used in the
main argument and then discharge them later.

Lemma 1. @t P TΣ rt P TΩ ñ lsΩptq � lsΣptqs
Lemma 2. @t P TΩÓpXcq{Xc rtyΩÓpXcqptq � tyΩÓpXÓqptq � tyΩÓ

pXÓqptqs

Lemma 3. @t P TΣcpXcq{Xc rtyΣ�pXcqptq � tyΣpXqpt
qs

Theorem 6. If Ω Σ and Ω and Σ are sensible, then the constructor sort
refinements ΣcpXcq � ppSc, cq, F c Z Xcq and ΩÓpXcq � ppSc, cq, F Ó

Ω Z Xcq
are both sensible and preregular.

Proof.
We first prove ΣcpXcq is sensible (which implies ΩÓpXcq is sensible). Since Σ
sensible implies ΣpXq sensible for any signature Σ, it is sufficient to prove Σc

is sensible. Recall the signature morphism p
q : Σc Ñ Σ. Then suppose that
f : w Ñ s, f : w1 Ñ s1 P F c where w � c w1. Then w
 � c w1
 and, by
sensibility of Σ, s
 � c s1
, which implies s � c s1 by Corollary 5.

22 S. Skeirik and J. Meseguer

We first prove that ΩÓpXcq is preregular. By abuse of language, let X also
denote the signature ppS, q, Xq. Then note that @t P TΩÓpXcqrtyΩÓpXcqptq �
tyΩÓpXÓqptq Z tyXptqs and ΩÓpXÓq X X � H. Thus, by Lemma 2, we obtain
that @t P TΩÓpXcq{Xc rtyΩÓpXÓqptq � tyΩÓ

pXÓqptqs. Thanks to the facts above,

lsΩÓpXcq � lsΩÓ

pXÓq Z lsX . By the signature isomorphism ΩÓ

pXÓq � ΩpXq,
this is equivalent to lsΩÓpXcq � p

q; lsΩpXq; p
q Z lsX , where semicolon denotes
function composition in diagrammatic order. Since X is preregular by definition
and ΩpXq by assumption, lsΩÓpXcq satisfies @t P TΣrlsΣptq � Hs, as required.

We now prove ΣcpXcq is preregular. First let t P Xc. Then t P X Z XÓ. If
t � x :s P X then lsΣcpXcqpx :sq � lsΣpXqpx :s
q � s. Similarly, if t � x : s P XÓ,
lsΣcpXcqpx :sq � lsΩpXqpx :s
q
 � s.

Now let t P TΣcpXcq{Xc. Note tyΣcpXcqptq � tyΩÓpXcqptq Z tyΣ�pXcqptq, i.e.,

the type of non-variable t is from F Ó
Ω or F and lsΣcpXcqptq � min ptyΩÓpXcqptqZ

tyΣ�pXcqptqq. Suppose t P TΩÓpXÓq{XÓ. By Lemma 2 and ΩÓ

pXÓq � ΩpXq,

we obtain tyΩÓpXcqptq � tyΩÓ

pXÓqptq � tyΩpXqpt
q
. By Lemmas 1 and 3, we

have min ptyΩpXqpt
qq � min ptyΣpXqpt
qq � min ptyΣ�pXcqptqq. Then note
lsΣcpXcqptq � min ptyΩpXqpt
q
 Z tyΩpXqqpt
qq � lsΩpXqpt
q
. Finally, assume
that t P TΣcpXcq{TΩÓpXcq. Then we obtain tyΩÓpXcqptq � H and lsΣcpXcqptq �
min ptyΣ�pXcqptqq � min ptyΣpXqpt
qq � lsΣpXqpt
q by Lemma 3. Thus, we
have @t P TΣcpXcqrlsΣcpXcqptq � Hs, as required. [\

Corollary 2. The functions lsΩÓpXcq and lsΣcpXcq are defined by:

(a) @t P TΩcpXcq lsΩÓpXcqptq � lsΩpXqpt
q
 if t P TΩÓpXÓq else lsΣpXqpt
q

(b) @t P TΣcpXcq lsΣcpXcqptq � lsΩpXqpt
q
 if t P TΩÓpXÓq else lsΣpXqpt
q

We now extend the result above to show that B-preregularity is preserved
under a weak assumption that is often satisfied in practice. We first state the
required condition and then give the proof.

Definition 9. Let B be a set of axioms, t � t1 P B with varspt � t1q � Y and
α P rY Ñ Xs. We say B respects constructors iff tα P TΩpXq ô t1α P TΩpXq.

Theorem 7. Assume ΣpXq and ΩpXq are sensible and B-preregular and that
ΩpXq ΣpXq and B respects constructors. Then their respective constructor
sort refinements ΣcpXcq and ΩÓpXcq are also B-preregular.

Proof. We apply Theorem 6 to immediately show that ΣcpXcq and ΩÓpXcq
are sensible and preregular. We first prove ΣcpXcq is B-preregular. Thus, let
t � t1 P B with Y � varsptq � varspt1q and α P rY Ñ Xcs. Note that the value
of functions lsΩÓpXcq and lsΣcpXcq is completely determined by the input term t
and functions lsΩpXq and lsΣpXq. In particular, if lsΣpXqptαq � lsΣpXqpt1αq, then

lsΣcpXcqptαq � lsΣcpXcqpt1αq iff tα P TΩÓpXÓq ô t1α P TΩÓpXcq by Corollary 2
(the same holds true for lsΩÓpXcq). Since B respects constructors, it is enough to

show @t P TΩpXqrtα P TΩÓpXq ô α P rY Ñ TΩÓpXÓqss where Y � varsptq � H.
The base case where t � x : s is trivial, so assume t � fpt1, � � �, tnq. Then

Metalevel Algorithms For Variant Satisfiability 23

tα � fpt1α, � � �, tnαq and tiα P TΩÓpXq ô α P rY Ñ TΩÓpXÓqs for 1 ¤ i ¤ n
by induction hypothesis. But then f : s1� � �sn Ñ s P FΩ with t1 P TΩpXqsi iff
f : s1
� � �sn
 Ñ s
 P FΩ and fpt1α, � � �, tnαq � tα P TΩÓpXÓq, as required. [\

The following corollary lifts the result above to decompositions.

Corollary 3. Let R � pΣ,B,Rq be convergent with constructor decomposition
RΩ � pΩ,BΩ , RΩq and Ω Σ. Then Σc and ΩÓ are sensible and B-preregular.

Proof. Note that protecting a constructor decomposition implies B respects con-
structors (see pg. 6). Then apply Theorem 7.

We have now shown that our construction, under mild conditions, preserves
sensibility and B-preregularity. Thus, B-unification will be well-defined in our
new signature. We now move to prove the main theorem of this section which
shows how most general constructor instances of a term modulo B may be
obtained by a single unification problem in ΣcpXcq. We first collect a number
of essential facts which relate TΩpXq to TΩÓpXÓq and will be used in the proof.

Lemma 4. Suppose that α, β P rX Ñ TΩpXqs, α1, β1 P rXÓ Ñ TΩÓpXÓqs, and
θ, γ P rXc Ñ TΣcpXcqs. Let idÓ P rXc Ñ XÓs where idÓpx : sq � x : s
. Then:

(a) @α P rX Ñ TΩpXqs rpα
q
 � αs, @α P rXÓ Ñ TΩÓpXÓqs rpα
q
 � αs
(b) @t, t1 P TΩpXqrt �B t1 ô t
 �B t1
s ^ @t, t1 P TΩÓpXÓqrt �B t1 ô t
 �B t1
s
(c) rα �B β ô α
 �B β
s ^ rα1 �B β1 ô α1
 �B β1
s
(d) @t PTΣcpXcqrt
 � tpidÓqs ^ pidÓq
 � id
(e) @t PTΣcpXcqrptθq
 � t
pθ
q^ptθq
� t
pθ
q^pθγq
 � θ
pγ
q^pθγq
� θ
pγ
qs

Proof. Both (a) and (b) follow immediately since TΩÓ

pXÓq � TΩÓpXÓq and by

isomorphism p
q : ΩÓ

pXÓq Ñ ΩpXq. Then (c) is an immediate application of

(b). Finally, (d) and (e) are easy structural induction proofs. [\

We now give a precise construction of mgciΩB using B-unification in ΣcpXcq.

Theorem 8. Suppose ΣpXq and ΩpXq are sensible and B-preregular, Ω Σ,
and B respects constructors. Then (a) @t P TΣpXqs @t1 P TΩpXqs1 with s � s1

and x R varsptq, tα �B t1 iff there are η P mguBpt � x : cps1qq and θ such that
η
θ|varsptq �B α where α P rvarsptq Ñ TΩpXqs and θ P rX Ñ TΩpXqs and
(b) the set of most general constructor instances of t modulo B is defined by
mgciΩBptq � ttpη

q | η P mguBpt � x : lsΣpXqptq
qu.

Proof. We first prove (a). Let β � α
 Z tpx :s1
, t
1

qu. Then observe:

tα �B t1 ô ptαq
 �B t1

ô t
pα
q �B t1

ô t
β �B x :s1
β

ô Dη1 P mguBpt
 � x :s1
q Dθ
1 P rXÓ Ñ TΩÓpXÓqs rη1θ1 �B βs

24 S. Skeirik and J. Meseguer

which follow by Lemma 4 and the fact B respects constructors so tα P TΩpXq.
Let id be the identity substitution and note x :ps1
q
 � x :s1
. Then we obtain:

η1 P mguBpt
 � x :s1
q

ô η1 P mguBpt
 � x :ps1
q
q

ô η1 P mguBptpid
Óq � x :s1
pid

Óqq

ô idÓη1 P mguBpt � x :s1
q

η1θ1 �B β

ô pη1θq
 �B β

ô η1
pθ1
q �B β

ô η1
pθ1
q|varsptq �B α ^

η1
pθ1
qpxq �B t1

by Lemma 4. Now let η � idÓη1 and θ � θ1
. Then we can derive equalities
η
θ � pidÓη1q
θ � pidÓq
pη1
qθ � idpη1
qθ � η1
pθ1
q as required. Finally pbq is
an immediate application of paq. [\

In case the constructor decomposition has no rules (i.e., free constructors
modulo BΩ), Theorem 8 yields an easy method to compute constructor variants.

Corollary 4. Let pΣ,B,Rq be convergent and protect constructor decomposition
pΩ,BΩ ,Hq and Ω Σ. The most general constructor variants of t P TΣpXq are
JtKΩR,B � tpt

1pη
q, θη
q | pt1, θq P JtKR,B ^ η P mguBpt1, x : lsΣpXqpt1q
qu.

Proof. Apply Corollary 3. It is sufficient to prove: (a) each pt1η θηq P JtKΩR,B
is a constructor variant (b) for any constructor variant pt2, ψq, we obtain that
Dpt1η, θηq P JtKΩR,Brpt

1η, θηq �R,B pt2, φqs. To see (a), suppose pt1, θq P JtKR,B . By
definition of most general unifier and Theorem 8, mguBpt1, x : cplsΣpXqpt1qqq is
the set of most general substitutions η modulo B such that t1η
 P TΩpXq. Since
pΣ,B,Rq protects pΩ,BΩ ,Hq and Ω is a signature of free constructors modulo
B, we obtain t1η
!R,B � t1η
, and pt1η
, θη
q is a constructor variant. To see
(b), note that, by definition, JtK covers every variant, and mgciΩBpt

1q covers every
constructor instance, as required. [\

Finally, we can apply Corollary 4 directly to find the set of most general
constructor B-unifiers of φ, by letting variant unifiers of φ be represented by
terms φ1 P TΣ^pXq and computing the most general constructor variants of φ1.

B.1 Auxiliary Lemmas

In these proofs, we always assume that pSc, cq is a constructor sort refinement
of pS, q. In Lemma 1, we require two simple lemmas which are left as an exercise
to the reader. Let Σ be an arbitrary signature. Then (1) if Σ is preregular and
fpt1, � � �, tnq P TΣ then tyΣpfpt1, � � �, tnqq � tyΣpf, lsΣpt1q � � � lsΣptnqq with n ¥ 0
and (2) t P TΣ ô tyΣptq � H.

Lemma 1. If Ω Σ then @t P TΣrt P TΩ ñ lsΩptq � lsΣptqs.

Proof. Assume Ω Σ and t P TΩ . Suppose that t � c P TΩ is a con-
stant. Then tyΩpc, nilq � H and min ptyΣpc, nilqq P tyΩpc, nilq. Since we

Metalevel Algorithms For Variant Satisfiability 25

have tyΩpc, nilq � tyΣpc, nilq then min ptyΩpc, nilqq � min ptyΣpc, nilqq and
lsΩptq � lsΣptq. Now suppose t � fpt1, � � �, tnq. Then tyΩpfpt1, � � �, tnqq � H and
tyΩpf, wq � H where w � lsΩpt1q � � � lsΩptnq. But t1 � � � tn P TΩ , so by induc-
tion hypothesis, w � lsΣpt1q � � � lsΣptnq. Since min ptyΣpf, wqq P tyΩpf, wq and
tyΩpf, wq � tyΣpf, wq, then we have min ptyΩpf, wqq � min ptyΣpf, wqq and
lsΩptq � lsΣptq, as required. [\

Lemma 2. @t P TΩÓpXcq{Xc rtyΩÓpXcqptq � tyΩÓpXÓqptq � tyΩÓ

pXÓqptqs

Proof. The base case where t � c P TΩÓpXcq{Xc, a constant, is trivial, so suppose
t � fpt1, � � � , tnq. There are two cases: either for each 1 ¤ i ¤ n, we have
varsptiq � XÓ or not. If not, tyΩÓpXcqptq � tyΩÓpXÓqptq � tyΩÓ

pXÓqptq � H since

these three signatures share the same non-variable operators F Ó
Ω whose arity is

contained in pSÓq�. Otherwise, by induction hypothesis, for 1 ¤ i ¤ n, we have

tyΩÓpXcqptiq � tyΩÓpXÓqptiq � tyΩÓ

pXÓqptiq, and since operators F Ó

Ω are shared,

we have tyΩÓpXcqptq � tyΩÓpXÓqptq � tyΩÓ

pXÓqptq. [\

Lemma 3. @t P TΣcpXcq{Xc rtyΣ�pXcqptq � tyΣpXqpt
qs

Proof. The case where t � c P TΣcpXcq{TΩÓpXcq, a constant, is trivial, so
suppose t � fpt1, � � � , tnq. By definition, Df : s1 � � �sn Ñ s P F with si P S,
ti : s1i, and s1i ¤

c si for 1 ¤ i ¤ n. But p
q : pS, cq Ñ pS, q—also p
q :
Σ�pXcq Ñ ΣpXq � Σ�pXcq—is a poset/signature morphism, so s1
i ¤ s
i � si,
t
i P TΣpXq, and tyΣ�pXcqptq � tyΣ�pXcqpt
q. Also note tyΣ�pXcq|TΣpXq � tyΣpXq,
since f : s1 � � �sn Ñ s P F YXc with s1 � � � sn P S� iff f : s1 � � �sn Ñ s P F YX.
But t
 P TΣpXq, thus tyΣ�pXcqptq � tyΣ�pXcqpt
q � tyΣpXqpt
q, as required. [\

Lemma 4. @s, s1 P SÓrs �¤c s1 ô s
 �¤ s1
s

Proof. Note that p�¤cq is the smallest equivalence relation generated by p¤cq,
i.e. p�¤cq � p¤c Y ¥cq�. Likewise, p�¤q � p¤ Y ¥q�. To see pðq, note since
p¤q � p¤cq, we have s
 �¤ s1
 ñ s
 �¤c s1
. Since s ¤c s
 and s1 ¤c s1
,
by transitivity of �¤c and since p¤c Y ¥cq � p�¤cq, we have s �¤c s1. To
see pñq, note s �¤c s1 ô Dn P Nrsp¤c Y ¥cqns1s. For n � 0, p¤c Y ¥cq is
the equality relation and the result follows trivially. Now suppose we have sp¤c

Y ¥cqns2p¤c Y ¥cqs1. By the induction hypothesis, s
p¤ Y ¥q�s2
. Suppose
now that s2 ¤c s1 (the case s2 ¥c s1 is analogous). Since p
q is monotonic,
s2
 ¤ s1
. Thus, s
p¤ Y ¥q�s1
 giving s
 �¤ s1
 as required. [\

Corollary 5.

(a) @n P N @w,w1 P pSÓqnrw ¤c w1 ñ w
 ¤ w1
s
(b) @n P N @w,w1 P pSqn rw ¤ w1 ñ w
 ¤ w1
s
(c) @n P N @w,w1 P pSÓqnrw �¤c w1 ô w
 �¤ w1
s

Proof. (a) and (b) follow by monotonicity of p
q and p
q and since the homomor-
phic extension to strings preserves monotonicity. (c) follows by Lemma 4 and the
fact that the homomorphic extension of p
q preserves p¤q and thus p�¤q. [\

26 S. Skeirik and J. Meseguer

C Empty and Finite Sort Constructions

In this section, we present three algorithms and prove their correctness. Given
an order-sorted signature, possibly with axioms, we define rewrite theories and
sentences in rewriting logic which represent solutions to the: (i) sort empti-
ness, (ii) sort finiteness, and (iii) term generation problems by rewrite theories
implementable in the Maude rewrite engine. In the following definitions we al-
ways assume that we are reasoning over an order-sorted, kind-complete4 signa-
ture Σ � ppS, q, F q where B is a set of associative/commutative/unit axioms
over Σ. Before proceeding, we define some notation. For f : s1 � � � sn Ñ s, let
ragspfq � ts1, � � � , snu and ranpfq � s. Let S�H � ts P S | TΣ{B,s � Hu,
F�H � tf P F | argspfq � S�Hu, and Σ�H � ppS�H, |S�Hq, F�Hq. Given
F 1 � F , let Σ|F 1 � ppS, q, F 1q. Given binary relations R1 � S1 � S1, and
R2 � S2�S2, we write R1 � R2 iff R1 and R2 are bisimilar. Given S � S1XS2,

R1
SÐÑ R2 holds iff for all s P S, pR1, sq terminates iff pR2, sq terminates where,

by definition, pR, sq terminates iff there is no infinite R-path starting from s.

C.1 Sort Emptiness Check for General Signatures.

Here we develop an algorithm that checks if a sort s P S satisfies TΣ,s � H by
performing unsorted rewriting over PpSq. The initial state is the sort we wish
to check for non-emptiness. We trace the operator declarations in reverse to see
which sorts are needed to build operators inhabiting the argument sort.

Definition 10. Let RM pΣq � pΣM , ACI,RM q where:

(1) ΣM � S Z t*u Z t , u (an unsorted signature)
(2) ACI � tx,y � y,xu Y tpx,yq,z � x,py,zqu Y tx,x � xu
(3) RM is the smallest rewrite relation such that:

(a) ps, s1q P p q ñ s1 Ñ s P RM
(b) c : Ñ s P F ñ sÑ * P RM
(c) f : s1 � � � sk Ñ s P F ^ k ¥ 1 ñ sÑ s1, � � � ,sk P RM

In the text below, let pÑq � TΣM � TΣM abbreviate p�ACI ;ÑRM ;�ACIq. We
further let pÑ0q � p�ACIq, pÑn�1q � pÑq; pÑnq, pÑ�q �

�
n¥0pÑ

nq, and also
pÑ�q �

�
n¡0pÑ

nq.

Lemma 5. Let a1, . . . , ak, k ¥ 1 be a ground ΣM -term, so that ai P SZt*u, i.e.,
a1, . . . , ak is a multiset. If a1, . . . , ak Ñn *, then for each nonempty submultiset
B � a1, . . . , ak there is an m ¤ n such that B Ñm *.

4 Any signature can be easily extended to a kind-complete one by: (i) adding a top sort,
named rss, above each connected component rss; and (ii) adding for each operator
f : s1 . . . sn Ñ s in the original signature a new typing f : rs1s . . . rsns Ñ rss. For the
original sorts s P S, the terms in the original signature and in its kind-completion are
the same. Maude always perform this kind completion for any user-given signature.

Metalevel Algorithms For Variant Satisfiability 27

Proof. By induction on n.
Base Case. If n � 0 we must have ai � *, 1 ¤ i ¤ k, and the result follows
trivially.

Induction Step. Suppose the result true for n and let a1, . . . , ak Ñn�1 *. Since
rewriting takes place modulo ACI we may assume without loss of generality
that i �� j ñ ai �� aj . Then we must have some ai P S, a rule ai Ñ D in RM ,
and rewrites

a1, . . . , ak Ñ a1, . . . , ai�1, D, ai�1, . . . , an Ñn *.

Note that a1, . . . , ai�1, D, ai�1, . . . , an may have repeated elements. We now rea-
son by cases on B � a1, . . . , ak. If ai R B, then B � a1, . . . , ai�1, D, ai�1, . . . , an
and the result follows trivially by the induction hypothesis. If B � ai, B

1 (where
by convention B1 could be empty), then B Ñ D,B1 and we have an inclusion
D,B1 � a1, . . . , ai�1, D, ai�1, . . . , an so the result follows again trivially by the
induction hypothesis. [\

Lemma 6. @s P S rTΣ,s � Hô sÑ� *s

Proof. pñq. Let s P S with TΣ,s � H. Pick any t P TΣ,s and proceed by
structural induction on t.
Base case. [t � c]: Suppose c : Ñ s2 P F is a constant. Since c P TΣ,s, we
know s2 ¤ s. If s2 � s, then directly apply rule sÑ * generated by declaration
c : Ñ s2 P F . If s2 s, we will have an additional rule s Ñ s2, which we can
apply followed by sÑ *. In either case, obtain sÑ� *.
Induction Step. [t � fpt1, � � � , tnq]: Since t � fpt1, � � � , tnq P TΣ,s, we have Df :
s1 � � � sk Ñ s2 P F with s2 ¤ s where ti P TΣ,si for i P k. If s2 � s, then directly
apply rule sÑ s1, � � � ,sk generated by declaration f : s1 � � � sk Ñ s2 P F . Since
ti P TΣ,si for i P k, we know that TΣ,si � H. Thus, by inductive hypothesis,
obtain that si Ñ� * for i P k. By transitivity, we have s2 Ñ� *, � � � ,*. By
idempotency, obtain s2 Ñ� *. If s2 s, we will have an additional rule sÑ s2

we can apply followed by s2 Ñ� *. In either case, obtain sÑ� *.
pðq. Suppose towards a contradiction the set S1 � ts P S | TΣ,s � H^sÑ� *u
is non-empty. For each s P S1 these is an mpsq P N with s Ñmpsq * and mpsq
smallest possible with that property. Pick s0 P S1 with mps0q smallest among
such mpsq. We now have two cases to consider: mps0q � 1 or mps0q ¡ 1. Suppose
mps0q � 1. Then s0 Ñ *. But this can only happen if there is a c :Ñ s0 P F . But
then c P TΣ,s0 and TΣ,s0 � H, a contradiction. Thus, assume mps0q ¡ 1. Again,
there are two possibilities: s0 Ñ s1 Ñmps0q�1 * or s0 Ñ s1, � � � ,sk Ñmps0q�1 *. If
s0 Ñ s1 Ñmps0q�1 *, since mps0q is smallest possible in S1, we must have s1 R S1

and therefore TΣ,s1 � H. But this rewrite can only occur if s1 s0. Thus,
TΣ,s1 � TΣ,s0 , so that TΣ,s0 � H, a contradiction. If s0 Ñ s1, � � � ,sk Ñmps0q�1

*, by Lemma 5 for each 1 ¤ i ¤ k we have si Ñmi * for some mi ¤ mps0q � 1.
Therefore, TΣ,si � H, 1 ¤ i ¤ k. But the rewrite s0 Ñ s1, � � � ,sk can only
occur if there is an f : s1 � � � sk Ñ s0 P F . But given any ti P TΣ,si , 1 ¤ i ¤ k,
we can construct fpt1, � � � , tkq P TΣ,s0 . Thus, TΣ,s0 � H, a contradiction. [\

28 S. Skeirik and J. Meseguer

There are two remaining questions: (i) is checking the sentence s Ñ� *

decidable? and (ii) can this approach compute emptiness of equivalence classes
of terms TΣ{E defined by a theory pΣ,Eq? Fortunately, in this case, there is no
extra work to be done. To answer (i), note that whenever |S| � |F | ℵ0, then
|PpSq|�|RM | ℵ0 by construction. Thus, we have a finite number of states and
rules, rendering the search problem decidable. To answer (ii), note that, TΣ{E,s
is just an equivalence relation over TΣ,s. Thus, TΣ{E,s � H iff TΣ,s � H. As a
result of this section, note that the set of sorts S�H � S is computable; thus,
we obtain that F�H and Σ�H are computable as well.

C.2 Term Generation for General Signatures.

In this section, we present an algorithm which, given an order-sorted signature
Σ and a sort s, will generate all terms in TΣ,s. We begin with a few opening
remarks. Note that: (i) an order-sorted signature Σ can be modeled as a tree
automaton so that t P TΣ,s iff t is accepted by the corresponding automaton when
the accepting state is s; and (ii) any tree automaton and its computations can be
modeled as an unsorted ground rewrite theory. Clearly, an order-sorted ground
rewrite theory will also work; here we prefer an order-sorted theory because
it gives a simpler definition that preserves the original signature. Throughout
this section, we let SΣ denote the signature of constants s associated to sorts
s P S, where each sort s is declared a constant whose sort is the top sort rss:
SΣ � ppS, q, ts : Ñ rss | s P Suq.

Definition 11. Let RP pΣq � pΣ�H Z SΣ ,H, RP q where RP is the smallest
rewrite relation RP � RP,S ZRP,NC ZRP,C such that:

(a) ps, s1q P p q ñ sÑ s1 P RP,S
(b) f : s1 � � � sk Ñ s P F�H ^ k ¥ 1 ñ fps1, � � � , skq Ñ s P RP,NC
(c) c : Ñ s P F�H ñ cÑ s P RP,C

Note that, even though Σ�H � Σ, we do not lose completeness for parsing,
since any sort in s P S{S�H necessarily satisfies TΣ,s � H. Furthermore, it is
straightforward to show that Σ Z SΣ is sensible and preregular iff Σ is sensible
and preregular and @s P S�H rt P TΣ,s ô t Ñ�

RP
ss. We now turn to term

generation.

Definition 12. Let RGpΣq � pΣ�HZSΣ ,H, RGq with RG � R�1
P . Since RP �

RP,S ZRP,NC ZRP,C we will use the notation: RG,S � R�1
P,S, RG,NC � R�1

P,NC ,

and RG,C � R�1
P,C .

Again, by only considering Σ�H � Σ, we do not lose completeness for term
generation. We immediately obtain the following corollary.

Corollary 6. @s P S�H rt P TΣZSΣ ô sÑ!
RG

ts

Metalevel Algorithms For Variant Satisfiability 29

C.3 Finite Sort Detection for Finite Signatures.

Here we develop an algorithm which, given s P S, checks if |TΣ,s| ℵ0. Note
that using RG we already trivially obtain a semi-decidable algorithm for sort
finiteness: compute S�H via RM ; if s R S�H, then return yes; otherwise compute
tt P TΣ,s | s Ñ!

RG
tu; if the process terminates, then return yes. Of course, an

efficient, decidable algorithm would be preferable. Nevertheless, RG is not too
far from our desired decidable solution.

Our strategy is as follows: (i) give sufficient conditions so that termination of
RG corresponds to sort finiteness in Σ, (ii) define a rewrite system RF and give
sufficient conditions to prove termination of RF , (iii) show RF terminates if and
only if RG terminates, (iv) and finally, present a decidable algorithm using LTL
model checking to characterize when RF terminates.

Lemma 7. If |S| � |F | ℵ0 then pRG, sq is non-terminating iff |TΣ,s| � ℵ0

Proof. By construction of RG, |RG| � |p q| � |F | |S|2 � |F | ℵ0. View-
ing possible rewrite paths starting from s as forming a tree, observe that the
tree branches finitely, since each term has finite positions and possible rewrites.
Suppose pRG, sq is terminating. Then, by K onig’s Lemma, the tree of rewrites
must be finite and therefore there is a finite number of final states, so that
|TΣ,s| ℵ0. Otherwise, if pRG, sq is non-terminating, we have an infinite path
s ÑRG t1 ÑRG t2 ÑRG � � � tn ÑRG � � � . Since |RG| ℵ0, DR � RG that
repeats infinitely often. Since RG � RG,S Z RG,C Z RG,NC and RG,S Z RG,C
terminates (because acyclicicty/finiteness of and only S-terms can be rewrit-
ten), we must have R X RG,NC � H. But note that, if |t| is the of t as
viewed as a tree, then if t ÑRG,SZRG,C t1, we must have |t| � |t1|, whereas
if t ÑRG,NC t1, we must have |t| |t1|, so that t|ti|uiPN is a sequence such
that |ti| Ñ 8. Also note that by the definition of RG, all sorts s1 occurring as
a subterm of ti belong to S�H � ts1, � � � , smu, so that we can choose terms
u1 P TΣ,s1 , � � � , um P TΣ,sm . We can then regard S�H as a set of variables
and view σ � ts1 ÞÑ u1, � � � , sm ÞÑ unu as a substitution. But, by definition of
RG, this gives us an infinite sequence ttiσuiPN of terms where for each i P N,
tiσ P TΣ,s and |tiσ| ¥ |ti|. Therefore, |tiσ| Ñ 8, and since TΣ,s contains terms
of unbounded size, we have |TΣ,s| � ℵ0. [\

Definition 13. Let RF pΣq � pS�H,H, RF q where RF � RF,S Y RF,NC is the
smallest rewrite relation such that:

(a) s s1 ñ s1 Ñ s P RF,S
(b) f : s1 � � � sn Ñ s1 P F�H ^ tsu � ts1, � � � , snu ñ s1 Ñ s P RF,NC

Note that we only consider S�H and F�H, because, implicitly, any sort s P
S{S�H trivially satisfies |TΣ,s| ℵ0 and any operator f P F {F�H cannot
contribute meaningfully to building a term t P TΣ,s. Before we complete the
main proof, we prove a lemma and add an additional definition.

Lemma 8. Given |S�H| ℵ0 and s P S�H, then the following are equivalent:

30 S. Skeirik and J. Meseguer

1. pRF , sq is non-terminating
2. Ds1 P S�HrsÑ�

RF
s1 Ñ�

RF
s1s

3. there is an infinite RF -rewrite path sÑRF s1 ÑRF s2 � � � ÑRF sn ÑRF � � �
and s1 P S�H occurring infinitely often in the sequence

Proof. Obviously, (3) implies (2), since if s1 occurs infinitely often, we must have
sÑ�

RF
s1 Ñ�

RF
s1. Also, (2) implies (1) since sÑ�

RF
s1 Ñ�

RF
s1 Ñ�

RF
s1 Ñ�

RF
� � �

is a non-terminating sequence. Finally, (1) implies (3), since |S�H| ¤ ℵ0, which
forces some s1 P S�H to occur infinitely often in any infinite sequence. [\

Definition 14. Given Σ � ppS, q, NC ZCq with non-constants and constants
NC and C respectively, let R�GpΣq � pΣ�H|NCZSΣ ,H, RG,�q such that RG,� �
RG,S ZRG,NC .

Observe that R�G is identical to RG except that R�G contains neither constants
nor rewrite rules over constants. Now we are ready to prove the main theorem.

Theorem 9. RF � R�G and R�G
S�HÐÑ RG

Proof. We first prove RF � R�G. Define a relation H � pS�H�TΣ|NCZŜq where

ps, tq P H iff s � t. To prove RF � R�G, we show that given two arrows, we can
find another two arrows to make the diagrams below commute.

s s1

t t1

RF
H H

RG,�

s s1

t t1

RF
H H

RG,�

Suppose s � t. If ps, s1q P RF then ps, s1q P RF,S or ps, s1q P RF,NC . Assume
ps, s1q P RF,S . Then s1 s in Σ�H. But then, by definition, ps, s1q P RG,S .
Thus, trss ÑRG,� trs

1s and s1 � trs1s, as required. Alternatively, assume ps, s1q P
RF,NC . Then Df : s1 � � � sn Ñ s1 P F�H with tsu � argspfq. But then, by
definition, ps1, fps1, � � � , snqq P RG,NC . Thus, trss ÑRNCG

trfps1, � � � , snqs and

s1 � trfps1, � � � , snqs. Since we used only definitional equivalences, the other
direction follows symmetrically.

To prove R�G
S�HÐÑ RG, given s P S�H, we must show pR�G, sq terminates

iff pRG, sq terminates. To begin, note RG � RG,� Z RG,C . Thus, if RG,� is
non-terminating, RG must also be non-terminating. To see the other direction,
note RG,C always terminates since each rule has the form s Ñ c P C and
constants cannot be rewritten. We proceed by proving the contrapositive. Thus,
assume RG,� terminates. By Lemma 9, s Ñn

RG
t iff s Ñi

RG,�
t1 Ñj

RG,C
t with

n � i � j. Since RG,� and RG,C are terminating and finitely branching, there
are maximum bounds on the size of i and j, say, imax and jmax respectively. But
then any rewrite path sÑn

RG
t necessarily has n ¤ imax � jmax ; thus pRG, sq is

terminating. [\

Lemma 9. @n P N rrsÑn
RG

ts ô rDi, j P N rsÑi
RG,�

t1 Ñj
RG,C

t^ n � i� jsss

Metalevel Algorithms For Variant Satisfiability 31

Proof. To begin, recall RG � RG,� Z RG,C and note the following equivalence
for s P S�H, n P N, and t P TΣ :

sÑn
RG

t
ô

Dl1, l2,m1,m2 P N Dt1, t2, t3, tiv P TΣ
rrrsÑl1

RG,�
t1 Ñl2

RG,C
ts _ rsÑm1

RG,�
t2 ÑRG,C t

3 ÑRG,� t
iv Ñm2

RG
tss ^

l1 � l2 � m1 �m2 � 2 � ns

That is, either all the applications of rules in RG,C occur at the end, or there
is at least one such application before a rule in RG,�. Since the first case already
fits the desired form, we need only consider the second case. Note all rules in RG
have the form S Q sÑ t P TΣZSΣ . RG,C rules in particular have the form sÑ c
for c P F . Thus, if a RG,C rule is applied to trssp at position p, a RG,� rule cannot
later also be applied at p. Now suppose sÑm1

RG,�
t2 ÑRG,C t

3 ÑRG,� t
iv Ñm2

RG
t.

Then, t2 � t2rs1, s2sp,q with p, q disjoint positions and:

s t2rs1, s2s t2rc, s2s

t2rs1, us t2rc, us

RG,�

�

RG,�

RG,C
RG,�

RG,C

for any c P C and u P TΣZSΣ , the diagram above commutes. We complete
the proof by induction on m2, the number of rewrites occurring after the first
RG,C rule followed by a RG,� rule. Suppose m2 � 0. Then we can commute
the RG,� and RG,C arrows as above, to obtain a rewrite chain of the form
s Ñm1�1

RG,�
v ÑRG,C t, for some v P TΣZSΣ , as required. Now suppose m2 ¡ 0.

Again, we commute the two arrows to obtain sÑm1�1
RG,�

v1 ÑRG,C v2 Ñ
m2

RG
t. We

apply our induction hypothesis to obtain s Ñm1�1
RG,�

v1 Ñ
k1
RG,�

v3 Ñ
k2
RG,C

t with

k1�k2 � m2 which is equivalent to sÑm1�k1�1
RG,�

v3 Ñ
k2
RG,C

t andm1�k1�k2�1 �
m1 �m2 � 1 � n, as required. [\

Thus, according to Lemmas 7 and 8 and Theorem 9, pRF , sq will generate a
rewrite path containing a cycle iff |TΣ,s| � ℵ0. To complete the proof, for any
s P S, we just to characterize when Ds1 P S�Hrs Ñ�

RF
s1 Ñ�

RF
s1s holds. Thus,

define the set of cycle sorts by cypS�Hq � ts P S�H | s Ñ�
RF

su. This set can
be computed by search, since the sort set and rules are both finite. Then, we
immediately obtain the following theorem.

Theorem 10. @s P S�H |TΣ,s| � ℵ0 iff
�
s1PcypS�Hq

RF $ sÑ� s1

Proof. By Lemmas 7 and 8 and Theorem 9, obtain |TΣ,s| � ℵ0 iff the formula
Ds1 P S�HrsÑ�

RF
s1 Ñ�

RF
s1s holds. But by definition, any s1 which satisfies the

formula satisfies s1 P cypS�Hq, so reduce to Ds1 P cypS�Hqrs Ñ�
RF

s1s. Since S
is finite by assumption, cypS�Hq is finite. So, reduce to

�
s1PcypS�Hq

s Ñ�
RF

s1,

which holds iff
�
s1PcypS�Hq

RF $ sÑ� s1 holds, as required. [\

32 S. Skeirik and J. Meseguer

A final consideration is how to check, for a theory pΣ,Bq, whether equivalence
classes of terms TΣ{B,s are finite, given that TΣ,s is finite. Since TΣ{B,s is a set
of B-equivalence classes rts, each containing at least one t1 P rts with t1 P TΣ,s, if
|TΣ,s| ℵ0, then TΣ{B,s ℵ0. Nevertheless, in general, it may be the case that
|TΣ{B,s| ℵ0 but |TΣ,s| � ℵ0.

Example 5. Σ � ppta, bu, tpa, bquq, 0 :Ñ a, 1 :Ñ b, � : a aÑ a, � : b bÑ bq.
Let B contain a unit axiom for 0 over p�q. Then |TΣ,a| � |TΣ,b| � ℵ0 but
|TΣ{B,a| � 1 and |TΣ{B,b| � ℵ0.

However, under some conditions onB, finiteness of TΣ{B,s can still be checked.

Lemma 10. Suppose B is a set of associativity and/or commutativity axioms,
|Σ| ℵ0, and that Σ is B-preregular. Then |TΣ{B,s| ℵ0 iff |TΣ,s| ℵ0.

Proof. Since Σ is B-preregular, all axioms in B are sort preserving. Then obtain
rusB P TΣ{AC,s iff rusB � TΣ,s, proving pðq. To show pñq, note that for any
combination of associativity and/or commutativity axioms, rusB is a finite set.
Since TΣ{B,s is finite, then TΣ,s is a finite union of finite sets and thus finite. [\

Let U be a set of unit axioms for unit elements e1 :Ñ s1, � � � en :Ñ sn in Σ.
Then define Σ � U � Σ � te1 :Ñ s1, � � � en :Ñ snu.

Lemma 11. Let B0 be a set of associative and/or commutative axioms and U
a set of unit axioms in Σ, B � B0 Z U , |Σ| ℵ0, and Σ � ppS, q, F q be
B-preregular according to Footnote 1. If |TΣ�U,s| � ℵ0, then |TΣ{B,s| � ℵ0.

Proof. We can orient a unit axiom fpx, eq � x as a rewrite rule fpx, eq Ñ x,
so that the set U becomes a set of rewrite rules RpUq. In this way the theory
pΣ,B0 Z Uq can be decomposed as a convergent rewrite theory pΣ,B0, RpUqq.
Observe TΣ�U{B0

� CRU
and CRU

� TΣ{B . By Lemma 10, |TΣ�U,s| � ℵ0 iff
|TΣ�U{B0,s| � ℵ0. Thus, ℵ0 � |TΣ�U,s| � |TΣ�U{B0,s| ¤ |CRB ,s| � |TΣ{B,s|.
Since |TΣ{B,s| ¤ ℵ0, obtain |TΣ{B,s| � ℵ0, as required. [\

The following lemma gives sufficient conditions such that |TΣ,s| � ℵ0 but
|TΣ{B,s| ℵ0 when B is a combination of associativity and/or commutativity
and/or unit axioms.

Lemma 12. Let B0 be a set of associative and/or commutative axioms and U
a set of unit axioms in Σ, B � B0 Z U , |Σ| ℵ0, and Σ � ppS, q, F q be B-
preregular according to Footnote 1. Let f : s1s2 Ñ s1 with lspeq ¤ s1, s2 ¤ s1 ¤ s
and let e be a unit element satisfying either a left-unit, right-unit, or left- and
right-unit axiom(s) for f with s P S. If Eg : w Ñ s2 P F {tf, eurs2 ¤ ss then
|TΣ,s| � ℵ0 and TΣ{B,s � tteuu.

Proof. By an easy structural induction, @u P TΣ,sru!RpUq,B0
� es. [\

Metalevel Algorithms For Variant Satisfiability 33

C.4 Decidable Sort Classifications

Here, we present a summary of the results of the previous sections by illustrating
how our methods can be used to compute a partitioning of S that respects sort
classifications.

Corollary 7. Let B be a set of associative and/or commutative axioms, |Σ|
ℵ0, and Σ be B-preregular. Then S has the following computable partitioning:

S � S�H Z SH � S8 Z SF Z SH

where S8 � ts P S�H | |TΣ{B,s| � ℵ0u and SF � S�H{S8.

Proof. First apply Lemma 10 to reduce to the case with no axioms. By Lemma
6, s �ÑRM ,ACI * iff s P SH, and S�H � S{SH. Thus, obtain Σ�H. By Theorem
10, if s P S�H then s P SF iff p

�
s1PcypS�Hq

RF $ s Ñ� s1q. Otherwise, by

definition, s P S8. Since each step—performing search via p�ACI ;ÑRM ;�ACIq,
filtering F�H, computing cypS�Hq, and search over RF—is decidable, the entire
sort classification algorithm is decidable, as required. [\

In the more general ACU case, this partitioning can no longer be computed
by the methods we have presented. However, in many cases we can still compute
such a partition, for example if all sorts s for which |TΣ,s| � ℵ0 fall into one of
the cases laid out in Lemmas 11 and 12. Otherwise, the partitioning algorithm
will fail to classify some sorts, leaving some proof obligations for the user.

D Implementation Details and Example

In this appendix, we present further details about our Maude implementation
of the variant satisfiability algorithm and show some examples. Since Maude di-
rectly implements rewriting logic, the code is just a rewrite theory where rewrites
correspond to query evaluation. Since rewriting logic is reflective [10], we can
directly represent metalevel entities in Maude using the META-LEVEL module.
Essentially, the algorithm follows the outline sketched in Section 4; it takes a
reflected theory M and formula φ �

�
G ^

�
D as input. Thanks to mixfix

parsing, we can use a more natural notation to write φ:

u1 ==? v1 /\ � � � /\ uk ==? vk /\ u11 =!? v11 /\ � � � /\ u1l =!? v1l

where each ui, vi and u1j , v
1
j for 1 ¤ i ¤ k and 1 ¤ j ¤ l is a meta-term. We have

developed functions corresponding to the different subalgorithms presented in
Section 4 and shown in the diagram in the Introduction (except that currently,
finite sort checks in the presence of axioms are not implemented yet). Let t
denote a metaterm. Then some of the primary functions include:

(a) ctor-variantspM, tq which computes constructor variants of t
(b) ctor-unifierspM,

�
Gq which computes mguΩM p

�
Gq

(c) mgcipM, tq which computes the most general constructor instances of t

34 S. Skeirik and J. Meseguer

(d) sort-finite?pM, sq which checks whether |TM,s| ℵ0

(e) ctor-refinepMq which computes the constructor sort refinement of M
(f) consistent?pM,

�
Dq which checks if

�
D is consistent in M

Before we proceed, note that the complete codebase, including an appropriate
Maude binary, and examples, can be downloaded from:

http://maude.cs.illinois.edu/tools/var-sat/

We show an example of how the tool may be run below (this example is
included with the tool distribution, so the interested reader may check it). Note
that Maude, in general, is not a whitespace sensitive language, so we can gen-
erally arrange syntactic items as we wish. A signature is specified by the sort,
subsort, and op declarations which define the sorts, subsort relation, and oper-
ators respectively. The constructor subsignature is the signature which has the
same sorts and subsorts, but only the operators marked with the [ctor] tag are
included. Finally, the var and eq declarations declare variables and equations.
The example theory ZERO? above is from [27] (Example 1).

Example Commandline Output

fmod ZERO? is

sorts Nat Bool .

op 0 : -> Nat [ctor] .

op top : -> Bool [ctor] .

op bot : -> Bool [ctor] .

op s : Nat -> Nat [ctor] .

op zero? : Nat -> Bool .

var N:Nat .

eq zero?(s(N)) = bot .

eq zero?(0) = top .

endfm

red var-sat(upModule(ZERO?,true),

’zero?[’N:Nat] ==? ’X:Bool /\

’X:Bool =!? ’top.Bool /\

’X:Bool =!? ’bot.Bool) .

reduce in TEST-ZERO? :

var-sat(upModule(ZERO?,true),

’zero?[’N:Nat] ==? ’X:Bool /\

’X:Bool =!? ’bot.Bool /\

’X:Bool =!? ’top.Bool) .

rewrites: 428 in 4ms cpu (0ms real) (107000 rewrites/second)

result Bool: false

Note that the term syntax in the formula which is an input to var-sat and
in the module varies; this is due to the fact that our algorithm takes meta-terms

Metalevel Algorithms For Variant Satisfiability 35

Example Variants and Constructor Variants

red variants(upModule(’ZERO?,true), ’zero?[’N:Nat]) .

reduce in TEST-ZERO? :

variants(upModule(’ZERO?,true), ’zero?[’N:Nat]) .

rewrites: 17 in 0ms cpu (0ms real) (~ rewrites/second)

result VariantTripleSet:

{’bot.Bool,’N:Nat <- ’s[’#4:Nat],4} |

{’top.Bool,’N:Nat <- ’0.Nat,2} |

{’zero?[’#1:Nat],’N:Nat <- ’#1:Nat,1}

red ctor-variants(upModule(’ZERO?,true), ’zero?[’N:Nat]) .

reduce in TEST-ZERO? :

ctor-variants(upModule(’ZERO?,true), ’zero?[’N:Nat]) .

rewrites: 365 in 0ms cpu (0ms real) (~ rewrites/second)

result VariantTripleSet:

{’bot.Bool,’N:Nat <- ’s[’#4:Nat],4} |

{’top.Bool,’N:Nat <- ’0.Nat,2}

as input. The function upModule gives us a meta-level representation of the
module ZERO?. In this simple example, var-sat returns false, since a totally
defined predicate cannot evaluate to both true and false. The example above
was originally used in [27] to show that variants and variant unifiers are in
general insufficient to reduce the satisfiability problem from one theory into its
subtheory. To see why, we can compute the variants and constructor variants of
zero?(N) as show above.

There are three most general variants: top, bot, and zero?(N) where N is
a Nat, but just top and bot are the most general constructor variants. Why is
the extra variant a problem? Because in the constructor subtheory, there are no
equations. Then, we obtain the variant unifier—but not constructor unifier!—
of unification problem zero?(N:Nat) ==? X:Bool where N:Nat ÞÑ N:Nat and
X:Bool ÞÑ zero?(N:Nat). When we apply this variant unifier to the disequa-
tions: ’X:Bool =!? bot and ’X:Bool =!? top, we obtain the two disequations:
zero?(N:Nat) =!? bot and zero?(N:Nat) =!? top which are both consistent
with the empty theory; this is clearly not what we want. However, by restricting
ourselves to just the constructor unifiers, the disequations are trivially inconsis-
tent, as we expected.

