133 research outputs found

    Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative 13C-IS py-GC–MS and whole cell wall HSQC NMR

    Get PDF
    Background The white-rot fungi Ceriporiopsis subvermispora (Cs), Pleurotus eryngii (Pe), and Lentinula edodes (Le) have been shown to be high-potential species for selective delignification of plant biomass. This delignification improves polysaccharide degradability, which currently limits the efficient lignocellulose conversion into biochemicals, biofuels, and animal feed. Since selectivity and time efficiency of fungal delignification still need optimization, detailed understanding of the underlying mechanisms at molecular level is required. The recently developed methodologies for lignin quantification and characterization now allow for the in-depth mapping of fungal modification and degradation of lignin and, thereby, enable resolving underlying mechanisms. Results Wheat straw treated by two strains of Cs (Cs1 and Cs12), Pe (Pe3 and Pe6) and Le (Le8 and Le10) was characterized using semi-quantitative py-GC–MS during fungal growth (1, 3, and 7 weeks). The remaining lignin after 7 weeks was quantified and characterized using ¹³C lignin internal standard based py-GC–MS and whole cell wall HSQC NMR. Strains of the same species showed similar patterns of lignin removal and degradation. Cs and Le outperformed Pe in terms of extent and selectivity of delignification (Cs ≥ Le >> Pe). The highest lignin removal [66% (w/w); Cs1] was obtained after 7 weeks, without extensive carbohydrate degradation (factor 3 increased carbohydrate-to-lignin ratio). Furthermore, though after treatment with Cs and Le comparable amounts of lignin remained, the structure of the residual lignin vastly differed. For example, Cα-oxidized substructures accumulated in Cs treated lignin up to 24% of the total aromatic lignin, a factor two higher than in Le-treated lignin. Contrarily, ferulic acid substructures were preferentially targeted by Le (and Pe). Interestingly, Pe-spent lignin was specifically depleted of tricin (40% reduction). The overall subunit composition (H:G:S) was not affected by fungal treatment. Conclusions Cs and Le are both able to effectively and selectively delignify wheat straw, though the underlying mechanisms are fundamentally different. We are the first to identify that Cs degrades the major β-O-4 ether linkage in grass lignin mainly via Cβ–O–aryl cleavage, while Cα–Cβ cleavage of inter-unit linkages predominated for Le. Our research provides a new insight on how fungi degrade lignin, which contributes to further optimizing the biological upgrading of lignocellulose. Electronic supplementary material The online version of this article (10.1186/s13068-018-1259-9) contains supplementary material, which is available to authorized users

    Gaining insights in the nutritional metabolism of amphibians : analyzing body nutrient profiles of the African clawed frog, Xenopus laevis

    Get PDF
    Whole bodies of Xenopus laevis (n = 19) were analysed for chemical composition and morphometrics. The nutrient profile (macronutrients, amino acids, fatty acids and minerals) was evaluated by sex; interactions among variables with body weights and lengths, and comparisons made with different species of marine and fresh water fish. Significant differences were found in morphometric measurements, water content, several minerals and fatty acids between sexes of X. laevis. Amino acid profiles differed in methionine, proline and cysteine, which could underlie different metabolic pathways in frogs when compared to fish. In addition, fatty acid profiles revealed more monounsaturated and n - 6 polyunsaturated fatty acids in frogs than in fish, more similar to values reported for terrestrial than aquatic vertebrates. Important interactions were also found between body measurements and fat, calcium, and phosphorus, as well as between essential and non-essential amino acids. The results indicate that frogs might have particular biochemical pathways for several nutrients, dependent on sex and linked to body weight, which ultimately could reflect specific nutrient needs

    Variation in the solubilization of crude protein in wheat straw by different white-rot fungi

    Get PDF
    Besides their unique ability to depolymerize cell wall components, white-rot fungi are known to assimilate nitrogenous compounds from substrates. This modification may change protein solubility and fermentation in the rumen. To investigate this, the crude protein (CP) in fungal treated wheat straw (3 fungal species, 2 strains each) was fractioned according to the Cornell Net Carbohydrate and Protein System (CNCPS) and assessed for in vitro protein fermentation using a modified gas production technique (IVGPN). Results showed that fungi increased fraction A (instantaneously soluble CP; ∼2.6 times) and B1 (rapidly degradable; ∼1.2 times); and decreased the slowly degradable fraction B3 (∼41.6%) and unavailable fraction C (∼48.3%). The IVGPN of straw treated with Ceriporiopsis subvermispora strains were not different to the control, but increased by 30.2 to 47.1% in Pleurotus eryngii and Lentinula edodes strains. The IVGPN was significantly (P <  0.01) correlated to all fractions of CP, except fraction B1 and B2 (intermediately degradable). All fungi also increased the arginine (∼56%) and lysine (∼15%) contents. This study shows the importance of assessing the protein solubilization by different fungal strains, which can uncover unique mechanisms in the cell wall depolymerization

    Urinary excretion of advanced glycation end products in dogs and cats

    Get PDF
    The present study was conducted with privately owned dogs and cats to investigate whether a relationship exists between the dietary AGEs and the urinary excretion of AGEs, as indication of possible effective absorption of those compounds in the intestinal tract of pet carnivores. For this purpose, data were collected from both raw fed and dry processed food (DPF) fed to dogs and cats, through spot urine sampling and questionnaires. Raw pet food (RF, low in AGE diets) was fed as a primary food source to 29 dogs and DPF to 28 dogs. Cats were categorized into 3 groups, which were RF (n = 15), DPF (n = 14) and dry and wet processed pet food (DWF, n = 25). Urinary-free carboxymethyllysine (CML), carboxyethyllysine (CEL) and lysinoalanine (LAL) were analysed using ultrahigh-performance liquid chromatography (UHPLC)—mass spectrometry, and were standardized for variable urine concentration by expressing the AGE concentrations as a ratio to urine creatinine (Ucr) concentration (µg/µmol Ucr). Urinary excretion of CML, CEL and LAL in dogs fed with DPF was 2.03, 2.14 and 3 times higher compared to dogs fed with RF (p <.005). Similar to the dogs, a significant difference in CML:Ucr, CEL:Ucr and LAL:Ucr between the three diet groups was observed in cats (p-overall < 0.005, ANOVA), in which the RF fed group excreted less AGEs than the other groups. Linear regression coefficients and SE of CML:Ucr, CEL:Ucr and LAL:Ucr showed that body weight and neuter status were significantly correlated with CML and CEL excretion, but not to LAL excretion. Our results revealed a significant correlation between dietary AGEs and urinary excretion of free CML, CEL and LAL, and also showed that endogenous formation of these AGEs occurs in both dogs and cats under physiological conditions.</p

    Glucogenic and lipogenic diets affect in vitro ruminal microbiota and metabolites differently

    Get PDF
    This study was conducted to evaluate the effects of two glucogenic diets (C: ground corn and corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and alfalfa silage) on the ruminal bacterial and archaeal structures, the metabolomic products, and gas production after 48 h in vitro fermentation with rumen fluid of dairy cows. Compared to the C and S diets, the L dietary treatment leaded to a lower dry matter digestibility (DMD), lower propionate production and ammonia-nitrogen concentration. The two glucogenic diets performed worse in controlling methane and lactic acid production compared to the L diet. The S diet produced the greatest cumulative gas volume at any time points during incubation compared to the C and L diet. The metabolomics analysis revealed that the lipid digestion especially the fatty acid metabolism was improved, but the amino acid digestion was weakened in the L treatment than in other treatments. Differences in rumen fermentation characteristics were associated with (or resulting from) changes in the relative abundance of bacterial and archaeal genera. The rumen fluid fermented with L diet had a significantly higher number of cellulolytic bacteria, including the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. The relative abundances of amylolytic bacteria genera including Selenomonas_1, Ruminobacter, and Succinivibrionaceae_UCG-002 were higher in samples for diets C and S. The results indicated that the two glucogenic diets leaded to a higher relative abundance of bacteria which functions in succinate pathway resulting in a higher propionate production. The steam-flaked corn diet had a higher gas production and lower level of metabolites in fatty acids and amino acids. Most highly abundant bacteria were observed to be not sensitive to dietary alterations of starch and fiber, except for several amylolytic bacteria and cellulolytic bacteria. These finding offered new insights on the digesting preference of ruminal bacteria, which can assist to improve the rumen functioning

    Altered Gut Microbial Fermentation and Colonization with Methanobrevibacter smithii in Renal Transplant Recipients

    Get PDF
    Renal transplant recipients (RTRs) often suffer from posttransplant diarrhea. The observed dysbiosis in RTR may influence the fermentation processes in the gut. In this study, we aimed to investigate whether fermentation differs between RTRs and healthy controls (HCs), by measuring breath H2 and CH4 concentrations. Additionally, we determined the fecal presence of the methanogen Methanobrevibacter smithii (M. smithii), which plays a main role in the process of methanogenesis. Data from the TransplantLines Biobank and Cohort Study (NCT03272841) was used. A total of 142 RTRs and 77 HCs were included. Breath H2 concentrations in RTRs were not significantly different from HCs. Breath CH4 concentrations in RTRs were significantly lower compared with HCs (median [interquartile range (IQR)] 7.5 [3.9–10.6] ppm vs. 16.0 [8.0–45.5] ppm, p < 0.001). M. smithii was less frequently present in the feces of RTRs compared to HCs (28.6% vs. 86.4% resp., p < 0.001). Our findings regarding the altered methanogenesis in the gut of RTRs show similarities with previous results in inflammatory bowel disease patients. These findings provide novel insight into the alterations of fermentation after renal transplantation, which may contribute to understanding the occurrence of posttransplant diarrhea. View Full-Tex

    Large-scale ICU data sharing for global collaboration: the first 1633 critically ill COVID-19 patients in the Dutch Data Warehouse

    Get PDF

    Clinical characteristics of women captured by extending the definition of severe postpartum haemorrhage with 'refractoriness to treatment': a cohort study

    Get PDF
    Background: The absence of a uniform and clinically relevant definition of severe postpartum haemorrhage hampers comparative studies and optimization of clinical management. The concept of persistent postpartum haemorrhage, based on refractoriness to initial first-line treatment, was proposed as an alternative to common definitions that are either based on estimations of blood loss or transfused units of packed red blood cells (RBC). We compared characteristics and outcomes of women with severe postpartum haemorrhage captured by these three types of definitions. Methods: In this large retrospective cohort study in 61 hospitals in the Netherlands we included 1391 consecutive women with postpartum haemorrhage who received either ≥4 units of RBC or a multicomponent transfusion. Clinical characteristics and outcomes of women with severe postpartum haemorrhage defined as persistent postpartum haemorrhage were compared to definitions based on estimated blood loss or transfused units of RBC within 24 h following birth. Adverse maternal outcome was a composite of maternal mortality, hysterectomy, arterial embolisation and intensive care unit admission. Results: One thousand two hundred sixty out of 1391 women (90.6%) with postpartum haemorrhage fulfilled the definition of persistent postpartum haemorrhage. The majority, 820/1260 (65.1%), fulfilled this definition within 1 h following birth, compared to 819/1391 (58.7%) applying the definition of ≥1 L blood loss and 37/845 (4.4%) applying the definition of ≥4 units of RBC. The definition persistent postpartum haemorrhage captured 430/471 adverse maternal outcomes (91.3%), compared to 471/471 (100%) for ≥1 L blood loss and 383/471 (81.3%) for ≥4 units of RBC. Persistent postpartum haemorrhage did not capture all adverse outcomes because of missing data on timing of initial, first-line treatment. Conclusion: The definition persistent postpartum haemo
    corecore