5 research outputs found

    The GSI anomaly

    Full text link
    Recently, an experiment at GSI Darmstadt has observed oscillating decay rates of heavy ions. Several controversial attempts have been made to explain this effect in terms of neutrino mixing. We briefly describe the experimental results, give an overview of the literature, and show that the effect cannot be due to neutrino mixing. If the effect survives, it could, however, be explained by hypothetical internal excitations of the mother ions (~ 10^(-15) eV).Comment: Contribution to the Proceedings of Neutrino 2008, based on a talk by M. Lindner and on a poster by the author

    Long-term climate change commitment and reversibility: an EMIC intercomparison

    Get PDF
    This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to: (i) quantify the climate change commitment of different radiative forcing trajectories, and (ii) explore the extent to which climate change is reversible on human timescales. All commitment simulations follow the four Representative Concentration Pathways (RCPs) and their extensions to 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near pre-industrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP 8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5–8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to pre-industrial levels over 100–1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to pre-industrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2

    Faint young Sun problem more severe due to ice-albedo feedback and higher rotation rate of the early Earth

    No full text
    was up to 25 % less luminous than today, yet there is strong evidence that the Earth’s ocean surface was not completely frozen. The most obvious solutions to this ‘faint young Sun problem ’ demand high concentrations of greenhouse gases such as carbon dioxide. Here we present the first comprehensive 3-dimensional simulations of the Archean climate that include processes as the sea-ice albedo feedback and the higher rotation rate of the Earth. These effects lead to CO2 partial pressures required to prevent the Earth from freezing that are significantly higher than previously thought. For the early Archean, we find a critical CO2 partial pressure of 0.4 bar in contrast to 0.06 bar estimated in previous studies with 1-dimensional radiative-convective models. Our results suggest that currently favored greenhouse solutions could be in conflict with constraints emerging for the middle and lat
    corecore