495 research outputs found
Identification of high-permeability subsurface structures with multiple point geostatistics and normal score ensemble Kalman filter
Alluvial aquifers are often characterized by the presence of braided high-permeable paleo-riverbeds, which constitute an interconnected preferential flow network whose localization is of fundamental importance to predict flow and transport dynamics. Classic geostatistical approaches based on two-point correlation (i.e., the variogram) cannot describe such particular shapes. In contrast, multiple point geostatistics can describe almost any kind of shape using the empirical probability distribution derived from a training image. However, even with a correct training image the exact positions of the channels are uncertain. State information like groundwater levels can constrain the channel positions using inverse modeling or data assimilation, but the method should be able to handle non-Gaussianity of the parameter distribution. Here the normal score ensemble Kalman filter (NS-EnKF) was chosen as the inverse conditioning algorithm to tackle this issue. Multiple point geostatistics and NS-EnKF have already been tested in synthetic examples, but in this study they are used for the first time in a real-world casestudy. The test site is an alluvial unconfined aquifer in northeastern Italy with an extension of approximately 3 km2. A satellite training image showing the braid shapes of the nearby river and electrical resistivity tomography (ERT) images were used as conditioning data to provide information on channel shape, size, and position. Measured groundwater levels were assimilated with the NS-EnKF to update the spatially distributed groundwater parameters (hydraulic conductivity and storage coefficients). Results from the study show that the inversion based on multiple point geostatistics does not outperform the one with a multiGaussian model and that the information from the ERT images did not improve site characterization. These results were further evaluated with a synthetic study that mimics the experimental site. The synthetic results showed that only for a much larger number of conditioning piezometric heads, multiple point geostatistics and ERT could improve aquifer characterization. This shows that state of the art stochastic methods need to be supported by abundant and high-quality subsurface data
Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter
[EN] Real-time data from on-line sensors offer the possibility to update environmental simulation models in real-time. Information from on-line sensors concerning contaminant concentrations in groundwater allow for the real-time characterization and control of a contaminant plume. In this paper it is proposed to use the CPU-efficient Ensemble Kalman Filter (EnKF) method, a data assimilation algorithm, for jointly updating the flow and transport parameters (hydraulic conductivity and porosity) and state variables (piezometric head and concentration) of a groundwater flow and contaminant transport problem. A synthetic experiment is used to demonstrate the capability of the EnKF to estimate hydraulic conductivity and porosity by assimilating dynamic head and multiple concentration data in a transient flow and transport model. In this work the worth of hydraulic conductivity, porosity, piezometric head, and concentration data is analyzed in the context of aquifer characterization and prediction uncertainty reduction. The results indicate that the characterization of the hydraulic conductivity and porosity fields is continuously improved as more data are assimilated. Also, groundwater flow and mass transport predictions are improved as more and different types of data are assimilated. The beneficial impact of accounting for multiple concentration data is patent. © 2012 Elsevier B.V.The authors gratefully acknowledge the financial support by ENRESA (Project 0079000029) and the Spanish Ministry of Science and Innovation (Project CGL2011-23295). Extra travel Grants awarded to the first and second author by the Ministry of Education (Spain) are also acknowledged. Dr. Jichun Wu and an anonymous reviewer are grateful acknowledged for their comments which helped improving the final version of the manuscript.Li, L.; Zhou, H.; Gómez-Hernández, JJ.; Hendricks-Franssen, HJ. (2012). Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. Journal of Hydrology. 428:152-169. https://doi.org/10.1016/j.jhydrol.2012.01.037S15216942
Assimilation of Cosmogenic Neutron Counts for Improved Soil Moisture Prediction in a Distributed Land Surface Model
Cosmic-Ray Neutron Sensing (CRNS) offers a non-invasive method for estimating soil moisture at the field scale, in our case a few tens of hectares. The current study uses the Ensemble Adjustment Kalman Filter (EAKF) to assimilate neutron counts observed at four locations within a 655 km pre-alpine river catchment into the Noah-MP land surface model (LSM) to improve soil moisture simulations and to optimize model parameters. The model runs with 100 m spatial resolution and uses the EU-SoilHydroGrids soil map along with the Mualem–van Genuchten soil water retention functions. Using the state estimation (ST) and joint state–parameter estimation (STP) technique, soil moisture states and model parameters controlling infiltration and evaporation rates were optimized, respectively. The added value of assimilation was evaluated for local and regional impacts using independent root zone soil moisture observations. The results show that during the assimilation period both ST and STP significantly improved the simulated soil moisture around the neutron sensors locations with improvements of the root mean square errors between 60 and 62% for ST and 55–66% for STP. STP could further enhance the model performance for the validation period at assimilation locations, mainly by reducing the Bias. Nevertheless, due to a lack of convergence of calculated parameters and a shorter evaluation period, performance during the validation phase degraded at a site further away from the assimilation locations. The comparison of modeled soil moisture with field-scale spatial patterns of a dense network of CRNS observations showed that STP helped to improve the average wetness conditions (reduction of spatial Bias from –0.038 cm cm to –0.012 cm cm) for the validation period. However, the assimilation of neutron counts from only four stations showed limited success in enhancing the field-scale soil moisture patterns
Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods
Climate change related modifications in the spatio-temporal distribution of precipitation and evapotranspiration will have an impact on groundwater resources. This study presents a modelling approach exploiting the advantages of integrated hydrological modelling and a broad climate model basis. We applied the integrated MIKE SHE model on a perialpine, small catchment in northern Switzerland near Zurich. To examine the impact of climate change we forced the hydrological model with data from eight GCM-RCM combinations showing systematic biases which are corrected by three different statistical downscaling methods, not only for precipitation but also for the variables that govern potential evapotranspiration. The downscaling methods are evaluated in a split sample test and the sensitivity of the downscaling procedure on the hydrological fluxes is analyzed. The RCMs resulted in very different projections of potential evapotranspiration and, especially, precipitation. All three downscaling methods reduced the differences between the predictions of the RCMs and all corrected predictions showed no future groundwater stress which can be related to an expected increase in precipitation during winter. It turned out that especially the timing of the precipitation and thus recharge is very important for the future development of the groundwater levels. However, the simulation experiments revealed the weaknesses of the downscaling methods which directly influence the predicted hydrological fluxes, and thus also the predicted groundwater levels. The downscaling process is identified as an important source of uncertainty in hydrological impact studies, which has to be accounted for. Therefore it is strongly recommended to test different downscaling methods by using verification data before applying them to climate model data
Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling
The ensemble Kalman filter (EnKF) is coupled with upscaling to build an aquifer model at a coarser scale than the scale at which the conditioning data (conductivity and piezometric head) had been taken for the purpose of inverse modeling. Building an aquifer model at the support scale of observations is most often impractical since this would imply numerical models with many millions of cells. If, in addition, an uncertainty analysis is required involving some kind of Monte Carlo approach, the task becomes impossible. For this reason, a methodology has been developed that will use the conductivity data at the scale at which they were collected to build a model at a (much) coarser scale suitable for the inverse modeling of groundwater flow and mass transport. It proceeds as follows: (1) Generate an ensemble of realizations of conductivities conditioned to the conductivity data at the same scale at which conductivities were collected. (2) Upscale each realization onto a coarse discretization; on these coarse realizations, conductivities will become tensorial in nature with arbitrary orientations of their principal components. (3) Apply the EnKF to the ensemble of coarse conductivity upscaled realizations in order to condition the realizations to the measured piezometric head data. The proposed approach addresses the problem of how to deal with tensorial parameters, at a coarse scale, in ensemble Kalman filtering while maintaining the conditioning to the fine-scale hydraulic conductivity measurements. We demonstrate our approach in the framework of a synthetic worth-of-data exercise, in which the relevance of conditioning to conductivities, piezometric heads, or both is analyzed.The authors acknowledge Wolfgang Nowak and three anonymous reviewers for their comments on the previous versions of the manuscript, which helped substantially to improve it. The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. Extra travel grants awarded to the first and second authors by the Ministry of Education (Spain) are also acknowledged. The second author also acknowledges financial support from the China Scholarship Council.Li ., L.; Zhou ., H.; Franssen, H.; Gómez-Hernández, JJ. (2012). Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling. Water Resources Research. 48(1):1-19. https://doi.org/10.1029/2010WR010214S119481Allaire , G. S. M. Kaber 2008 Numerical Linear Algebra, Texts Appl. Math. 55 Springer New YorkArulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. doi:10.1109/78.978374Behrens, R. A., MacLeod, M. K., Tran, T. T., & Alimi, A. C. (1998). Incorporating Seismic Attribute Maps in 3D Reservoir Models. SPE Reservoir Evaluation & Engineering, 1(02), 122-126. doi:10.2118/36499-paBurgers, G., Jan van Leeuwen, P., & Evensen, G. (1998). Analysis Scheme in the Ensemble Kalman Filter. Monthly Weather Review, 126(6), 1719-1724. doi:10.1175/1520-0493(1998)1262.0.co;2Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015Capilla, J. E., Rodrigo, J., & Gómez-Hernández, J. J. (1999). Mathematical Geology, 31(7), 907-927. doi:10.1023/a:1007580902175Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1), 206-222. doi:10.1007/s10040-004-0404-7Chen, Y., & Oliver, D. S. (2009). Cross-covariances and localization for EnKF in multiphase flow data assimilation. Computational Geosciences, 14(4), 579-601. doi:10.1007/s10596-009-9174-6Chen, Y., & Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29(8), 1107-1122. doi:10.1016/j.advwatres.2005.09.007Durlofsky, L. J., Jones, R. C., & Milliken, W. J. (1997). A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media. Advances in Water Resources, 20(5-6), 335-347. doi:10.1016/s0309-1708(96)00053-xEvensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343-367. doi:10.1007/s10236-003-0036-9Fu, J., & Jaime Gómez-Hernández, J. (2009). Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. Journal of Hydrology, 364(3-4), 328-341. doi:10.1016/j.jhydrol.2008.11.014Fu, J., Tchelepi, H. A., & Caers, J. (2010). A multiscale adjoint method to compute sensitivity coefficients for flow in heterogeneous porous media. Advances in Water Resources, 33(6), 698-709. doi:10.1016/j.advwatres.2010.04.005Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757. doi:10.1002/qj.49712555417Gómez-Hernández , J. J. 1991 A stochastic approach to the simulation of block conductivity values conditioned upon data measured at a smaller scale Stanford, Calif.Gómez-Hernández , J. J. A. G. Journel 1993 Joint sequential simulation of multi-Gaussian fields Geostatistics Troia '92 Amilcar Soares 1 85 94 Springer BerlinJaime Gómez-Hernández, J., & Mohan Srivastava, R. (1990). ISIM3D: An ANSI-C three-dimensional multiple indicator conditional simulation program. Computers & Geosciences, 16(4), 395-440. doi:10.1016/0098-3004(90)90010-qJaime Gómez-Hernánez, J., Sahuquillo, A., & Capilla, J. (1997). Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory. Journal of Hydrology, 203(1-4), 162-174. doi:10.1016/s0022-1694(97)00098-xGuadagnini, A., & Neuman, S. P. (1999). Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 1. Theory and computational approach. Water Resources Research, 35(10), 2999-3018. doi:10.1029/1999wr900160Hamill, T. M., Whitaker, J. S., & Snyder, C. (2001). Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter. Monthly Weather Review, 129(11), 2776-2790. doi:10.1175/1520-0493(2001)1292.0.co;2Hendricks Franssen , H. 2001 Inverse stochastic modelling of groundwater flow and mass transport Valencia, SpainHendricks Franssen, H. J., & Kinzelbach, W. (2008). Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9). doi:10.1029/2007wr006505Franssen, H. J. H., & Kinzelbach, W. (2009). Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. Journal of Hydrology, 365(3-4), 261-274. doi:10.1016/j.jhydrol.2008.11.033Franssen, H.-J. H., Gómez-Hernández, J., & Sahuquillo, A. (2003). Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. Journal of Hydrology, 281(4), 281-295. doi:10.1016/s0022-1694(03)00191-4Hendricks Franssen, H. J., Alcolea, A., Riva, M., Bakr, M., van der Wiel, N., Stauffer, F., & Guadagnini, A. (2009). A comparison of seven methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments. Advances in Water Resources, 32(6), 851-872. doi:10.1016/j.advwatres.2009.02.011Houtekamer, P. L., & Mitchell, H. L. (1998). Data Assimilation Using an Ensemble Kalman Filter Technique. Monthly Weather Review, 126(3), 796-811. doi:10.1175/1520-0493(1998)1262.0.co;2Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588Indelman, P., & Abramovich, B. (1994). Nonlocal properties of nonuniform averaged flows in heterogeneous media. Water Resources Research, 30(12), 3385-3393. doi:10.1029/94wr01782Li, L., Zhou, H., & Jaime Gómez-Hernández, J. (2010). Steady-state saturated groundwater flow modeling with full tensor conductivities using finite differences. Computers & Geosciences, 36(10), 1211-1223. doi:10.1016/j.cageo.2010.04.002Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). Journal of Hydrology, 404(3-4), 278-293. doi:10.1016/j.jhydrol.2011.05.001Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Advances in Water Resources, 34(4), 478-489. doi:10.1016/j.advwatres.2011.01.001Li, L., Zhou, H., Hendricks Franssen, H. J., & Gómez-Hernández, J. J. (2011). Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences Discussions, 8(4), 6749-6788. doi:10.5194/hessd-8-6749-2011Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46(11). doi:10.1029/2008wr007621McLaughlin, D., & Townley, L. R. (1996). A Reassessment of the Groundwater Inverse Problem. Water Resources Research, 32(5), 1131-1161. doi:10.1029/96wr00160Naevdal, G., Johnsen, L. M., Aanonsen, S. I., & Vefring, E. H. (2005). Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter. SPE Journal, 10(01), 66-74. doi:10.2118/84372-paOliver, D. S., & Chen, Y. (2010). Recent progress on reservoir history matching: a review. Computational Geosciences, 15(1), 185-221. doi:10.1007/s10596-010-9194-2Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R. J., … Reynolds, A. (2010). Results of the Brugge Benchmark Study for Flooding Optimization and History Matching. SPE Reservoir Evaluation & Engineering, 13(03), 391-405. doi:10.2118/119094-paRenard, P., & de Marsily, G. (1997). Calculating equivalent permeability: a review. Advances in Water Resources, 20(5-6), 253-278. doi:10.1016/s0309-1708(96)00050-4Rubin, Y., & Gómez-Hernández, J. J. (1990). A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations. Water Resources Research, 26(4), 691-701. doi:10.1029/wr026i004p00691Sánchez-Vila, X., Girardi, J. P., & Carrera, J. (1995). A Synthesis of Approaches to Upscaling of Hydraulic Conductivities. Water Resources Research, 31(4), 867-882. doi:10.1029/94wr02754Sanchez-Vila, X., Guadagnini, A., & Carrera, J. (2006). Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geophysics, 44(3). doi:10.1029/2005rg000169Strebelle, S. (2002). Mathematical Geology, 34(1), 1-21. doi:10.1023/a:1014009426274Sun, A. Y., Morris, A. P., & Mohanty, S. (2009). Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques. Water Resources Research, 45(7). doi:10.1029/2008wr007443Tran, T. (1996). The ‘missing scale’ and direct simulation of block effective properties. Journal of Hydrology, 183(1-2), 37-56. doi:10.1016/s0022-1694(96)80033-3Tran , T. X. Wen R. Behrens 1999 Efficient conditioning of 3D fine-scale reservoir model to multiphase production data using streamline-based coarse-scale inversion and geostatistical downscalingTureyen, O. I., & Caers, J. (2005). A parallel, multiscale approach to reservoir modeling. Computational Geosciences, 9(2-3), 75-98. doi:10.1007/s10596-005-9004-4Wen, X.-H., & Gómez-Hernández, J. J. (1996). Upscaling hydraulic conductivities in heterogeneous media: An overview. Journal of Hydrology, 183(1-2), ix-xxxii. doi:10.1016/s0022-1694(96)80030-8Wen, X.-H., Deutsch, C. V., & Cullick, A. S. (2002). Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique. Journal of Hydrology, 255(1-4), 151-168. doi:10.1016/s0022-1694(01)00512-1Wen, X. H., Durlofsky, L. J., & Edwards, M. G. (2003). Mathematical Geology, 35(5), 521-547. doi:10.1023/a:1026230617943Whitaker, J. S., & Hamill, T. M. (2002). Ensemble Data Assimilation without Perturbed Observations. Monthly Weather Review, 130(7), 1913-1924. doi:10.1175/1520-0493(2002)1302.0.co;2White , C. D. R. N. Horne 1987 Computing absolute transmissibility in the presence of fine-scale heterogeneityYeh, W. W.-G. (1986). Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem. Water Resources Research, 22(2), 95-108. doi:10.1029/wr022i002p00095Zhang, D., Lu, Z., & Chen, Y. (2007). Dynamic Reservoir Data Assimilation With an Efficient, Dimension-Reduced Kalman Filter. SPE Journal, 12(01), 108-117. doi:10.2118/95277-paZhou, H., Li, L., & Jaime Gómez-Hernández, J. (2010). Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Computers & Geosciences, 36(10), 1224-1235. doi:10.1016/j.cageo.2010.03.008Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014Zimmerman, D. A., de Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., … Rubin, Y. (1998). A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, 34(6), 1373-1413. doi:10.1029/98wr0000
How can remote sensing contribute in groundwater modeling?
Groundwater resources assessment, modeling and management are hampered considerably by a lack of data, especially in semi-arid and arid environments with a weak observation infrastructure. Usually, only a limited number of point measurements are available, while groundwater models need spatial and temporal distributions of input and calibration data. If such data are not available, models cannot play their proper role in decision support as they are notoriously underdetermined and uncertain. Recent developments in remote sensing have opened new sources for distributed spatial data. As the relevant entities such as water fluxes, heads or transmissivities cannot be observed directly by remote sensing, ways have to be found to link the observable quantities to input data required by the model. An overview of the possibilities for employing remote-sensing observations in groundwater modeling is given, supported by examples in Botswana and China. The main possibilities are: (1) use of remote-sensing data to create some of the spatially distributed input parameter sets for a model, and (2) constraining of models during calibration by spatially distributed data derived from remote sensing. In both, models can be improved conceptually and quantitativel
Paralellized ensemble Kalman filter for hydraulic conductivity characterization
[EN] The ensemble Kalman filter (EnKF) is nowadays recognized as an excellent inverse method for hydraulic conductivity characterization using transient piezometric head data. Its implementation is well suited for a parallel computing environment. A parallel code has been designed that uses parallelization both in the forecast step and in the analysis step. In the forecast step, each member of the ensemble is sent to a different processor, while in the analysis step, the computations of the covariances are distributed between the different processors. An important aspect of the parallelization is to limit as much as possible the communication between the processors in order to maximize execution time reduction.
Four tests are carried out to evaluate the performance of the parallelization with different ensemble and model sizes. The results show the savings provided by the parallel EnKF, especially for a large number of ensemble realizations. (c) 2012 Elsevier Ltd. All rights reserved.The first author acknowledges the financial support from China Scholarship Council (CSC). Financial support to carry out this work was also received from the Spanish Ministry of Science and Innovation through project CGL2011-23295, and from the Universitat Politecnica de Valencia through project PERFORA.Xu, T.; Gómez-Hernández, JJ.; Li ., L.; Zhou ., H. (2013). Paralellized ensemble Kalman filter for hydraulic conductivity characterization. Computers and Geosciences. 52:42-49. https://doi.org/10.1016/j.cageo.2012.10.007S42495
An empirical vegetation correction for soil water content quantification using cosmic ray probes
Cosmic ray probes are an emerging technology to continuously monitor soil water content at a scale significant to land surface processes. However, the application of this method is hampered by its susceptibility to the presence of aboveground biomass. Here we present a simple empirical framework to account for moderation of fast neutrons by aboveground biomass in the calibration. The method extends the N0-calibration function and was developed using an extensive data set from a network of 10 cosmic ray probes located in the Rur catchment, Germany. The results suggest a 0.9% reduction in fast neutron intensity per 1 kg of dry aboveground biomass per m2 or per 2 kg of biomass water equivalent per m2. We successfully tested the novel vegetation correction using temporary cosmic ray probe measurements along a strong gradient in biomass due to deforestation, and using the COSMIC, and the hmf method as independent soil water content retrieval algorithms. The extended N0-calibration function was able to explain 95% of the overall variability in fast neutron intensity
- …