2,137 research outputs found

    Similitude requirements for hypersonic, rarefied, nonequilibrium flow

    Get PDF
    Similitude requirements for hypersonic, rarefied flow with nonequilibrium chemistry and vibration are presented. The full Navier-Stokes equations with catalytic or noncatalytic walls and with or without slip conditions are nondimensionalized. The heat transfer coefficient is written in terms of fourteen dimensionless parameters and reduced to four by making the binary scaling assumption. Duplication of blunt and sharp nose heat transfer requires the use of air over a geometrically similar model with the same free stream velocity, wall temperature and product of free stream density and characteristic length. Estimates of this heat transfer coefficient are also presented

    Slip conditions with wall catalysis and radiation for multicomponent, nonequilibrium gas flow

    Get PDF
    The slip conditions for a multicomponent mixture with diffusion, wall-catalyzed atom recombination and thermal radiation are derived, and simplified expressions for engineering applications are presented. The gas mixture may be in chemical nonequilibrium with finite-rate catalytic recombination occurring on the wall. These boundary conditions, which are used for rarefied flow regime flow field calculations, are shown to be necessary for accurate predictions of skin friction and heat transfer coefficients in the rarefied portion of the space shuttle trajectory

    A numerical solution of the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders in air

    Get PDF
    Results of solving the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders are presented. The effects of wall catalysis and slip are also examined. The thin shock layer assumption is not made, and the thick viscous shock is allowed to develop within the computational domain. The results show good comparison with existing data. Due to the more pronounced merging of shock layer and boundary layer for the sphere, the heating rates for spheres become higher than those for cylinders as the altitude is increased

    Protective coatings for composite tubes in space applications

    Get PDF
    Protective coatings for graphite/epoxy (Gr/Ep) tubular structures for a Manned Space Station truss structure were evaluated. The success of the composite tube truss structure depends on its stability to long-term exposure to the Low Earth Orbit (LEO) environment with particular emphasis placed on atomic oxygen. Concepts for protectively coating Gr/Ep tubes include use of inorganic coated metal foils and electroplating. These coatings were applied to Gr/Ep tubes and then subjected to simulated LEO environmnet to evaluate survivability of coatings and coated tubes. Evaluation included: atomic oxygen resistance, changes in optical properties and adhesion, abrasion resistancem surface preparation required, coating uniformity, and formation of microcracks in the Gr/Ep tubes caused by thermal cycling. Program results demonstrated that both phosphoric and chromic acid anodized Al foil provided excellent adhesion to Gr/Ep tubes and exhibited stable optical properties when subjected to simulated LEO environment. The SiO2/Al coatings speuttered onto Al foils also resulted in an excellent protective coating. Electroplated Ni exhibited unaccepatble adhesion loss to Gr/Ep tubes during atomic oxygen exposure

    Neurofibromatosis (von Recklinghausen's disease) - An unusual cause of parenchymal lung disease : a case report

    Get PDF
    CITATION: Hardcastle, S. W. & Hendricks, M. L. 1984. Neurofibromatosis (von Recklinghausen's disease) - An unusual cause of parenchymal lung disease : a case report. South African Medical Journal, 66:959-960.The original publication is available at http://www.samj.org.zaInterstitial pulmonary fibrosis and bullae are uncommon findings in neurofibromatosis. A case of this disease with pulmonary parenchymal involvement is presented and the association between the two is discussed.Publisher’s versio

    How can remote sensing contribute in groundwater modeling?

    Get PDF
    Groundwater resources assessment, modeling and management are hampered considerably by a lack of data, especially in semi-arid and arid environments with a weak observation infrastructure. Usually, only a limited number of point measurements are available, while groundwater models need spatial and temporal distributions of input and calibration data. If such data are not available, models cannot play their proper role in decision support as they are notoriously underdetermined and uncertain. Recent developments in remote sensing have opened new sources for distributed spatial data. As the relevant entities such as water fluxes, heads or transmissivities cannot be observed directly by remote sensing, ways have to be found to link the observable quantities to input data required by the model. An overview of the possibilities for employing remote-sensing observations in groundwater modeling is given, supported by examples in Botswana and China. The main possibilities are: (1) use of remote-sensing data to create some of the spatially distributed input parameter sets for a model, and (2) constraining of models during calibration by spatially distributed data derived from remote sensing. In both, models can be improved conceptually and quantitativel
    • …
    corecore