159 research outputs found

    Preliminary Multi-Variable Cost Model for Space Telescopes

    Get PDF
    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years

    AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa

    Get PDF
    Background Current tools for Co-phylogenetic analyses are not able to cope with the continuous accumulation of phylogenetic data. The sophisticated statistical test for host-parasite co-phylogenetic analyses implemented in Parafit does not allow it to handle large datasets in reasonable times. The Parafit and DistPCoA programs are the by far most compute-intensive components of the Parafit analysis pipeline. We present AxParafit and AxPcoords (Ax stands for Accelerated) which are highly optimized versions of Parafit and DistPCoA respectively. Results Both programs have been entirely re-written in C. Via optimization of the algorithm and the C code as well as integration of highly tuned BLAS and LAPACK methods AxParafit runs 5–61 times faster than Parafit with a lower memory footprint (up to 35% reduction) while the performance benefit increases with growing dataset size. The MPI-based parallel implementation of AxParafit shows good scalability on up to 128 processors, even on medium-sized datasets. The parallel analysis with AxParafit on 128 CPUs for a medium-sized dataset with an 512 by 512 association matrix is more than 1,200/128 times faster per processor than the sequential Parafit run. AxPcoords is 8–26 times faster than DistPCoA and numerically stable on large datasets. We outline the substantial benefits of using parallel AxParafit by example of a large-scale empirical study on smut fungi and their host plants. To the best of our knowledge, this study represents the largest co-phylogenetic analysis to date. Conclusion The highly efficient AxPcoords and AxParafit programs allow for large-scale co-phylogenetic analyses on several thousands of taxa for the first time. In addition, AxParafit and AxPcoords have been integrated into the easy-to-use CopyCat tool

    Irradiated Male Tsetse from a 40-Year-Old Colony Are Still Competitive in a Riparian Forest in Burkina Faso

    Get PDF
    Background Tsetse flies are the cyclical vectors of African trypanosomosis that constitute a major constraint to development in Africa. Their control is an important component of the integrated management of these diseases, and among the techniques available, the sterile insect technique (SIT) is the sole that is efficient at low densities. The government of Burkina Faso has embarked on a tsetse eradication programme in the framework of the PATTEC, where SIT is an important component. The project plans to use flies from a Glossina palpalis gambiensis colony that has been maintained for about 40 years at the Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES). It was thus necessary to test the competitiveness of the sterile males originating from this colony. Methodology/Principal Findings During the period January-February 2010, 16,000 sterile male G. p. gambiensis were released along a tributary of the Mouhoun river. The study revealed that with a mean sterile to wild male ratio of 1.16 (s.d. 0.38), the abortion rate of the wild female flies was significantly higher than before (p = 0.026) and after (p = 0.019) the release period. The estimated competitiveness of the sterile males (Fried index) was 0.07 (s.d. 0.02), indicating that a sterile to wild male ratio of 14.4 would be necessary to obtain nearly complete induced sterility in the female population. The aggregation patterns of sterile and wild male flies were similar. The survival rate of the released sterile male flies was similar to that observed in 1983-1985 for the same colony. Conclusions/Significance We conclude that gamma sterilised male G. p. gambiensis derived from the CIRDES colony have a competitiveness that is comparable to their competitiveness obtained 35 years ago and can still be used for an area-wide integrated pest management campaign with a sterile insect component in Burkina Faso. (Résumé d'auteur

    The decline of the Serengeti Thomson's gazelle population

    Full text link
    The population of Thomson's gazelles in the Serengeti National Park, Tanzania has declined by almost two thirds over a 13 year period. In the early 1970s, numbers stood at 0.66 million animals but had decreased to less than 0.25 million animals in 1985 as estimated by 5 different censuses using two different counting techniques. Predation, interspecific competition and disease are all factors that could have contributed to this decline, and at least one of these factors, predation, could now prevent the Thomson's gazelle population from increasing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47770/1/442_2004_Article_BF00376974.pd

    Male mating biology

    Get PDF
    Before sterile mass-reared mosquitoes are released in an attempt to control local populations, many facets of male mating biology need to be elucidated. Large knowledge gaps exist in how both sexes meet in space and time, the correlation of male size and mating success and in which arenas matings are successful. Previous failures in mosquito sterile insect technique (SIT) projects have been linked to poor knowledge of local mating behaviours or the selection of deleterious phenotypes during colonisation and long-term mass rearing. Careful selection of mating characteristics must be combined with intensive field trials to ensure phenotypic characters are not antagonistic to longevity, dispersal, or mating behaviours in released males. Success has been achieved, even when colonised vectors were less competitive, due in part to extensive field trials to ensure mating compatibility and effective dispersal. The study of male mating biology in other dipterans has improved the success of operational SIT programmes. Contributing factors include inter-sexual selection, pheromone based attraction, the ability to detect alterations in local mating behaviours, and the effects of long-term colonisation on mating competitiveness. Although great strides have been made in other SIT programmes, this knowledge may not be germane to anophelines, and this has led to a recent increase in research in this area

    The Salivary Secretome of the Tsetse Fly Glossina pallidipes (Diptera: Glossinidae) Infected by Salivary Gland Hypertrophy Virus

    Get PDF
    Tsetse fly (Diptera; Glossinidae) transmits two devastating diseases to farmers (human African Trypanosomiasis; HAT) and their livestock (Animal African Trypanosomiasis; AAT) in 37 sub-Saharan African countries. During the rainy seasons, vast areas of fertile, arable land remain uncultivated as farmers flee their homes due to the presence of tsetse. Available drugs against trypanosomiasis are ineffective and difficult to administer. Control of the tsetse vector by Sterile Insect Technique (SIT) has been effective. This method involves repeated release of sterilized males into wild tsetse populations, which compete with wild type males for females. Upon mating, there is no offspring, leading to reduction in tsetse populations and thus relief from trypanosomiasis. The SIT method requires large-scale tsetse rearing to produce sterile males. However, tsetse colony productivity is hampered by infections with the salivary gland hypertrophy virus, which is transmitted via saliva as flies take blood meals during membrane feeding and often leads to colony collapse. Here, we investigated the salivary gland secretome proteins of virus-infected tsetse to broaden our understanding of virus infection, transmission and pathology. By this approach, we obtain insight in tsetse-hytrosavirus interactions and identified potential candidate proteins as targets for developing biotechnological strategies to control viral infections in tsetse colonies
    • …
    corecore