63 research outputs found
Unidirectional Reconstitution into Detergent-destabilized Liposomes of the Purified Lactose Transport System of Streptococcus thermophilus
The lactose transport protein (LacS) of Streptococcus thermophilus was amplified to levels as high as 8 and 30% of total membrane protein in Escherichia coli and S. thermophilus, respectively. In both organisms the protein was functional and the expression levels were highest with the streptococcal lacS promoter. Also a LacS deletion mutant, lacking the carboxyl-terminal regulatory domain, could be amplified to levels >20% of membrane protein. Membranes from S. thermophilus proved to be superior in terms of efficient solubilization and ease and extent of purification of LacS; >95% of LacS was solubilized with relatively low concentrations of Triton X-100, n-octyl-β-D-glucoside, n-dodecyl-β-D-maltoside, or C12E8. The LacS protein carrying a poly-histidine tag was purified in large quantities (~5 mg/liter of culture) and with a purity >98% in a two-step process involving nickel chelate affinity and anion exchange chromatography. The membrane reconstitution of LacS was studied systematically by stepwise solubilization of preformed liposomes, prepared from E. coli phospholipid and phosphatidylcholine, and protein incorporation at the different stages of liposome solubilization. The detergents were removed by adsorption onto polystyrene beads and H+-lactose symport and lactose counterflow were measured. Highest transport activities were obtained when Triton X-100 was used throughout the solubilization/purification procedure, whereas activity was lost irreversibly with n-octyl-β-D-glucoside. For reconstitutions mediated by n-dodecyl-β-D-maltoside, C12E8, and to a lesser extent Triton X-100, the highest transport activities were obtained when the liposomes were titrated with low amounts of detergent (onset of liposome solubilization). Importantly, under these conditions proteoliposomes were obtained in which LacS was reconstituted in an inside-out orientation, as suggested by the outside labeling of a single cysteine mutant with a membrane impermeable biotin-maleimide. The results are consistent with a mechanism of reconstitution in which the hydrophilic regions of LacS prevent a random insertion of the protein into the membrane. Consistent with the in vivo lactose/galactose exchange catalyzed by the LacS protein, the maximal rate of lactose counterflow was almost 2 orders of magnitude higher than that of H+-lactose symport.
Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions
This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developedatLeedsalongsideProfessor SteveBaldwintowhomthisreviewisdedicated.Italsoreviewstwo biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins – synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Detectable clonal mosaicism and its relationship to aging and cancer
In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
- …