18 research outputs found

    Decisive Markov Chains

    Get PDF
    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In particular, this holds for probabilistic lossy channel systems (PLCS). Furthermore, all globally coarse Markov chains are decisive. This class includes probabilistic vector addition systems (PVASS) and probabilistic noisy Turing machines (PNTM). We consider both safety and liveness problems for decisive Markov chains, i.e., the probabilities that a given set of states F is eventually reached or reached infinitely often, respectively. 1. We express the qualitative problems in abstract terms for decisive Markov chains, and show an almost complete picture of its decidability for PLCS, PVASS and PNTM. 2. We also show that the path enumeration algorithm of Iyer and Narasimha terminates for decisive Markov chains and can thus be used to solve the approximate quantitative safety problem. A modified variant of this algorithm solves the approximate quantitative liveness problem. 3. Finally, we show that the exact probability of (repeatedly) reaching F cannot be effectively expressed (in a uniform way) in Tarski-algebra for either PLCS, PVASS or (P)NTM.Comment: 32 pages, 0 figure

    Eager Markov Chains

    Get PDF
    Abstract. We consider infinite-state discrete Markov chains which are eager: the probability of avoiding a defined set of final states for more thanÒsteps is bounded by some exponentially decreasing function�(Ò). We prove that eager Markov chains include those induced by Probabilistic Lossy Channel Systems, Probabilistic Vector Addition Systems with States, and Noisy Turing Machines, and that the bounding function�(Ò) can be effectively constructed for them. Furthermore, we study the problem of computing the expected reward (or cost) of runs until reaching the final states, where rewards are assigned to individual runs by computable reward functions. For eager Markov chains, an effective path exploration scheme, based on forward reachability analysis, can be used to approximate the expected reward up-to an arbitrarily small error.

    Limiting Behavior of Markov Chains with Eager Attractors

    Get PDF
    We consider discrete infinite-state Markov chains which contain an eager finite attractor. A finite attractor is a finite subset of states that is eventually reached with probability 1 from every other state, and the eagerness condition requires that the probability of avoiding the attractor in n or more steps after leaving it is exponentially bounded in n. Examples of such Markov chains are those induced by probabilistic lossy channel systems and similar systems. We show that the expected residence time (a generalization of the steady state distribution) exists for Markov chains with eager attractors and that it can be effectively approximated to arbitrary precision. Furthermore, arbitrarily close approximations of the limiting average expected reward, with respect to state-based bounded reward functions, are also computable.

    Infinite-state Stochastic and Parameterized Systems

    No full text
    A major current challenge consists in extending formal methods in order to handle infinite-state systems. Infiniteness stems from the fact that the system operates on unbounded data structure such as stacks, queues, clocks, integers; as well as parameterization. Systems with unbounded data structure are natural models for reasoning about communication protocols, concurrent programs, real-time systems, etc. While parameterized systems are more suitable if the system consists of an arbitrary number of identical processes which is the case for cache coherence protocols, distributed algorithms and so forth. In this thesis, we consider model checking problems for certain fundamental classes of probabilistic infinite-state systems, as well as the verification of safety properties in parameterized systems. First, we consider probabilistic systems with unbounded data structures. In particular, we study probabilistic extensions of Lossy Channel Systems (PLCS), Vector addition Systems with States (PVASS) and Noisy Turing Machine (PNTM). We show how we can describe the semantics of such models by infinite-state Markov chains; and then define certain abstract properties, which allow model checking several qualitative and quantitative problems. Then, we consider parameterized systems and provide a method which allows checking safety for several classes that differ in the topologies (linear or tree) and the semantics (atomic or non-atomic). The method is based on deriving an over-approximation which allows the use of a symbolic backward reachability scheme. For each class, the over-approximation we define guarantees monotonicity of the induced approximate transition system with respect to an appropriate order. This property is convenient in the sense that it preserves upward closedness when computing sets of predecessors

    Infinite-state Stochastic and Parameterized Systems

    No full text
    A major current challenge consists in extending formal methods in order to handle infinite-state systems. Infiniteness stems from the fact that the system operates on unbounded data structure such as stacks, queues, clocks, integers; as well as parameterization. Systems with unbounded data structure are natural models for reasoning about communication protocols, concurrent programs, real-time systems, etc. While parameterized systems are more suitable if the system consists of an arbitrary number of identical processes which is the case for cache coherence protocols, distributed algorithms and so forth. In this thesis, we consider model checking problems for certain fundamental classes of probabilistic infinite-state systems, as well as the verification of safety properties in parameterized systems. First, we consider probabilistic systems with unbounded data structures. In particular, we study probabilistic extensions of Lossy Channel Systems (PLCS), Vector addition Systems with States (PVASS) and Noisy Turing Machine (PNTM). We show how we can describe the semantics of such models by infinite-state Markov chains; and then define certain abstract properties, which allow model checking several qualitative and quantitative problems. Then, we consider parameterized systems and provide a method which allows checking safety for several classes that differ in the topologies (linear or tree) and the semantics (atomic or non-atomic). The method is based on deriving an over-approximation which allows the use of a symbolic backward reachability scheme. For each class, the over-approximation we define guarantees monotonicity of the induced approximate transition system with respect to an appropriate order. This property is convenient in the sense that it preserves upward closedness when computing sets of predecessors

    Infinite-state Stochastic and Parameterized Systems

    No full text
    A major current challenge consists in extending formal methods in order to handle infinite-state systems. Infiniteness stems from the fact that the system operates on unbounded data structure such as stacks, queues, clocks, integers; as well as parameterization. Systems with unbounded data structure are natural models for reasoning about communication protocols, concurrent programs, real-time systems, etc. While parameterized systems are more suitable if the system consists of an arbitrary number of identical processes which is the case for cache coherence protocols, distributed algorithms and so forth. In this thesis, we consider model checking problems for certain fundamental classes of probabilistic infinite-state systems, as well as the verification of safety properties in parameterized systems. First, we consider probabilistic systems with unbounded data structures. In particular, we study probabilistic extensions of Lossy Channel Systems (PLCS), Vector addition Systems with States (PVASS) and Noisy Turing Machine (PNTM). We show how we can describe the semantics of such models by infinite-state Markov chains; and then define certain abstract properties, which allow model checking several qualitative and quantitative problems. Then, we consider parameterized systems and provide a method which allows checking safety for several classes that differ in the topologies (linear or tree) and the semantics (atomic or non-atomic). The method is based on deriving an over-approximation which allows the use of a symbolic backward reachability scheme. For each class, the over-approximation we define guarantees monotonicity of the induced approximate transition system with respect to an appropriate order. This property is convenient in the sense that it preserves upward closedness when computing sets of predecessors

    Decisive Markov Chains

    No full text
    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In particular, this holds for probabilistic lossy channel systems (PLCS). Furthermore, all globally coarse Markov chains are decisive. This class includes probabilistic vector addition systems (PVASS) and probabilistic noisy Turing machines (PNTM). We consider both safety and liveness problems for decisive Markov chains, i.e., the probabilities that a given set of states F is eventually reached or reached infinitely often, respectively. 1. We express the qualitative problems in abstract terms for decisive Markov chains, and show an almost complete picture of its decidability for PLCS, PVASS and PNTM. 2. We also show that the path enumeration algorithm of Iyer and Narasimha terminates for decisive Markov chains and can thus be used to solve the approximate quantitative safety problem. A modified variant of this algorithm solves the approximate quantitative liveness problem. 3. Finally, we show that the exact probability of (repeatedly) reaching F cannot be effectively expressed (in a uniform way) in Tarski-algebra for either PLCS, PVASS or (P)NTM
    corecore