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Abstract. We consider infinite-state discrete Markov chains which are eager:
the probability of avoiding a defined set of final states for more than n steps is
bounded by some exponentially decreasing function f(n). We prove that eager
Markov chains include those induced by Probabilistic Lossy Channel Systems,
Probabilistic Vector Addition Systems with States, and Noisy Turing Machines,
and that the bounding function f(n) can be effectively constructed for them.
Furthermore, we study the problem of computing the expected reward (or cost)
of runs until reaching the final states, where rewards are assigned to individual
runs by computable reward functions. For eager Markov chains, an effective path
exploration scheme, based on forward reachability analysis, can be used to ap-
proximate the expected reward up-to an arbitrarily small error.

1 Introduction

A lot of research effort has been devoted to developing methods for specification and
analysis of stochastic programs [28, 25, 16, 31]. The motivation is to capture the behav-
iors of systems with uncertainty, such as programs with unreliable channels, random-
ized algorithms, and fault-tolerant systems; and to analyze quantitative aspects such as
performance and dependability. The underlying semantics of such a program is usu-
ally defined as a finite-state Markov chain. Then, techniques based on extensions of
finite-state model checking can be used to carry out verification [17, 8, 12, 27].

One limitation of such methods is the fact that many systems that arise in computer
applications can only be faithfully modeled as Markov chains which have infinite state
spaces. A number of recent works have therefore considered the challenge of extend-
ing model checking to systems which induce infinite-state Markov chains. Examples
include probabilistic pushdown automata (recursive state machines) which are natural
models for probabilistic sequential programs with recursive procedures [19, 20, 22, 21,
18, 23]; and probabilistic lossy channel systems which consist of finite-state processes
communicating through unreliable and unbounded channels in which messages are lost
with a certain probability [1, 6, 9, 10, 13, 26, 29].

In a recent paper [3], we considered a class of infinite-state Markov chains with the
property that any computation from which the set F of final states is always reachable,
will almost certainly reach F . We presented generic algorithms for analyzing both qual-
itative properties (checking whether F is reached with probability one), and quantitative
properties (approximating the probability by which F is reached from a given state).

A central problem in quantitative analysis is to compute the expectations, variances
and higher moments of random variables, e.g., the reward (or cost) for runs until they
reach F . We address this problem for the subclass of eager Markov chains, where the



probability of avoiding F for n or more steps is bounded by some exponentially de-
creasing function f(n). In other words, computations that reach F are likely to do so in
“few” steps. Thus, eagerness is a strengthening of the properties of the Markov chains
considered in [3].

Eagerness trivially holds for all finite state Markov chains, but also for several
classes of infinite-state ones. Our main result (see Section 4 and 5) is that the follow-
ing classes of infinite-state systems induce eager Markov chains and that the bounding
function f(n) can be effectively constructed.

– Markov chains which contain a finite eager attractor. An attractor is a set of states
which is reached with probability one from each state in the Markov chain. An at-
tractor is eager, if the probability of returning to it in more than n steps decreases
exponentially with n. Examples of such Markov chains are those induced by proba-
bilistic lossy channel systems (PLCS). This is shown in two steps. First, we consider
systems that contain GR-attractors, defined as generalizations of the classical gam-
bler’s ruin problem, and show that each GR-attractor is eager. Then, we show that
each PLCS induces a Markov chain which contains a GR-attractor.

– Markov chains which are boundedly coarse: there is a K such that if F is reachable
then F will be reached within K steps with a probability which is bounded from
below. We give two examples of boundedly coarse Markov chains, namely those
induced by Probabilistic Vector Addition Systems with States (PVASS) and Noisy
Turing Machines (NTM).

Decidability of the eagerness property is not a meaningful question: for finite MC the
answer is always yes, and for infinite MC the instance is not finitely given, unless one
restricts to a special subclass like PLCS, PVASS or NTM.

For any eager Markov chain, and any computable reward function, one can effec-
tively approximate the expectation of the reward gained before a state in F is reached.
In Section 3 we present an exploration scheme, based on forward reachability analysis,
to approximate the expected reward up-to an arbitrarily small error ε > 0. We show that
the scheme is guaranteed to terminate in the case of eager Markov chains.

Related work. There has been an extensive work on model checking of finite-state
Markov chains [17, 11, 8, 12, 27].

Recently, several works have considered probabilistic pushdown automata and prob-
abilistic recursive state machines [19, 20, 22, 21, 18, 23]. However, all the decidability
results in these papers are based on translating the relevant properties into formulas in
the first-order theory of reals. Using results from [3], it is straightforward to show that
such a translation is impossible to achieve for the classes of Markov chains we consider.

The works in [1, 6, 10, 13, 29, 9] consider model checking of PLCS. In particular, [3]
gives a generic theory for verification of infinite-state Markov chains including PLCS
and PVASS. However, all these works concentrate on computing probabilities, and do
not give algorithms for analysis of expectation properties.

The work closest to ours is a recent paper by Brázdil and Kučera [14] which consid-
ers the problem of computing approximations of the accumulated reward (and gain) for
some classes of infinite-state Markov chains which satisfy certain preconditions (e.g.,
PLCS). However, their technique is quite different from ours and their preconditions
are incomparable to our eagerness condition. The main idea in [14] is to approximate



an infinite-state Markov chain by a sequence of effectively constructible finite-state
Markov chains such that the obtained solutions for the finite-state Markov chains con-
verge toward the solution for the original infinite-state Markov chain. Their precondi-
tions [14] include one that ensures that this type of approximation converges, which is
not satisfied by, e.g., PVASS. Furthermore, they require decidability of model checking
for certain path formulas in the underlying transition system.

In contrast, our method is a converging path exploration scheme for infinite-state
Markov chains, which only requires the eagerness condition. It is applicable not only
to PLCS but also to other classes like PVASS and noisy Turing machines. We also do
not assume that reachability is decidable in the underlying transition system. Finally,
we solve a somewhat more general problem. We compute approximations for the con-
ditional expected reward, consider possibly infinite sets of final states (rather than just
a single final state) and our reward functions can be arbitrary (exponentially bounded)
functions on runs (instead of cumulative state-based linear-bounded functions in [14]).

In a recent paper [5], we extend the theory of Markov chains with eager attractors
and show that the steady state distribution and limiting average expected reward can
be approximated for them. This provides additional motivation for studying Markov
chains with eager attractors.

Proofs omitted due to space limitations can be found in [4].

2 Preliminaries
Transition Systems. A transition system is a triple T = (S,−→, F ) where S is a
countable set of states, −→⊆ S × S is the transition relation, and F ⊆ S is the set of
final states. We write s −→ s′ to denote that (s, s′) ∈−→. We assume that transition
systems are deadlock-free, i.e., each state has at least one successor. If this condition is
not satisfied, we add a self-loop to states without successors – this does not affect the
properties of transition systems considered in this paper.

A run ρ is an infinite sequence s0s1 . . . of states satisfying si −→ si+1 for all i ≥ 0.
We use ρ(i) to denote si and say that ρ is an s-run if ρ(0) = s. We assume familiarity
with the syntax and semantics of the temporal logic CTL∗ [15]. We use (s |= φ) to
denote the set of s-runs that satisfy the CTL∗ path-formula φ. For instance, (s |= ©F )
and (s |= �F ) are the sets of s-runs that visit F in the next state resp. eventually reach
F . For a natural number n, ©=nF denotes a formula which is satisfied by a run ρ iff
ρ(n) ∈ F . We use �=nF to denote a formula which is satisfied by ρ iff ρ reaches F
first in its nth step, i.e., ρ(n) ∈ F and ρ(i) �∈ F when 0 ≤ i < n. Similarly, for
∼∈ {<,≤,≥, >}, �∼nF holds for a run ρ if there is an m ∈ N with m ∼ n such that
�=mF holds.

A path π is a finite sequence s0, . . . , sn of states such that si −→ si+1 for all
i : 0 ≤ i < n. We let |π| := n denote the number of transitions in a path. Note that a
path is a prefix of a run. We use ρn for the path ρ(0)ρ(1) · · · ρ(n) and Path=n

F (s) for
the set {ρn| ρ ∈ (s |= �=nF )}. In other words, Path=n

F (s) is the set of paths of length
n starting from s and reaching F first in the last state.

A transition system T = (S,−→, F ) is said to be effective if it is finitely branching
and for each s ∈ S, we can explicitly compute all successors, and check if s ∈ F .

Reward Functions. A reward function (with respect to a state s) is a mapping f :
(s |= �F ) → R which assigns a reward f(ρ) to any s-run that visits F . A reward



function is tail-independent if its value only depends on the prefix of the run up-to the
first state in F , i.e., if ρ1, ρ2 ∈ (s |= �=nF ) and ρn

1 = ρn
2 then f(ρ1) = f(ρ2). In such

a case (abusing notation), we write f(π) to denote f(ρ) where π = ρn. We say that f
is computable if we can compute f(π).

We will place an exponential limit on the growth of reward functions: A reward
function is said to be exponentially bounded if there are α, k ∈ R>0 s.t. |f(ρ)| ≤ kαn

for all n ∈ N and ρ ∈ (s |= �=nF ). We call (α, k) the parameter of f .

Markov Chains. A Markov chain is a triple M = (S, P, F ) where S is a countable
set of states, P : S × S → [0, 1] is the probability distribution, satisfying ∀s ∈
S.
∑

s′∈S P (s, s′) = 1, and F ⊆ S is the set of final states.
A Markov chain induces a transition system, where the transition relation consists

of pairs of states related by a positive probability. Formally, the underlying transition
system ofM is (S,−→, F ) where s1 −→ s2 iff P (s1, s2) > 0. In this manner, concepts
defined for transition systems can be lifted to Markov chains. For instance, a run or a
reward function in a Markov chain M is a run or reward function in the underlying
transition system, and M is effective, etc, if the underlying transition system is so.

A Markov chain M = (S, P, F ) and a state s induce a probability space on the set
of runs that start at s. The probability space (Ω, Δ,PM) is defined as follows: Ω =
sSω is the set of all infinite sequences of states starting from s and Δ is the σ-algebra
generated by the basic cylindric sets {Du = uSω : u ∈ sS∗}. The probability measure
PM is first defined on finite sequences of states u = s0 . . . sn ∈ sS∗ by PM(u) =∏n−1

i=0 P (si, si+1) and then extended to cylindric sets by PM(Du) = PM(u); it is
well-known that this measure is extended in a unique way to the entire σ-algebra. Let
PM (s |= φ) denote the measure of the set (s |= φ) (which is measurable by [31]).

Given a Markov chain M = (S, P, F ), a state s ∈ S, and a reward function f on
the underlying transition system, define the random variable X f : Ω → R as follows:
Xf (ρ) = 0 if ρ /∈ (s |= �F ), and Xf (ρ) = f(ρ) if ρ ∈ (s |= �F ). Then E(Xf |s |=
�F ) is the conditional expectation of the reward from s to F , under the condition that
F is reached.

A Markov chain M is said to be eager with respect to s ∈ S if there are α < 1 and
k ∈ R>0 s.t. ∀n ∈ N.PM(s |= �≥nF ) ≤ kαn. Intuitively, M is eager with respect
to s if the probability of avoiding F in n or more steps (starting from the initial state s)
decreases exponentially with n. We call (α, k) the parameter of (M, s).

3 Approximating the Conditional Expectation

In this Section, we consider the approximate conditional expectation problem defined
as follows:

APPROX EXPECT

Instance
– An effective Markov chain M = (S, P, F ), a state s ∈ S such that s |= ∃�F ,
M is eager w.r.t. s, and (M, s) has parameter (α1, k1).

– An exponentially bounded and computable tail-independent reward function f
with parameter (α2, k2) such that α1 · α2 < 1.

– An error tolerance ε ∈ R>0

Task Compute a number r ∈ R such that r ≤ E(Xf |s |= �F ) ≤ r + ε.



Note that the instance of the problem assumes that F is reachable from s. This
is because the expected value is undefined otherwise. We observe that the condition
α1 ·α2 < 1 can always be fulfilled if the reward function f is bounded by a polynomial,
since α2 > 1 can then be chosen arbitrarily close to 1. Many natural reward functions
are in fact polynomial. For instance, it is common to assign a reward g(s) to each
state and consider the reward of a run to be the sum of state rewards up to F : if ρ |=
�=nF then f(ρ) =

∑n
i=0 g(ρ(i)). If there is a bound on the state reward, i.e., ∃M ∈

R. ∀ρ. ∀i. |g(ρ(i))| < M , then such a reward function is linearly bounded in the length
of the run. Another important case is state rewards that depend on the “size” of the state
which can grow at most by a constant in every step, e.g., values of counters in a Petri
net (or VASS) or the number of messages in an unbounded communication channel. In
this case, the reward function is at most quadratic in the length of the run.

Remark. If α1 · αk
2 < 1, the kth moment Xk

f can also be approximated as it satisfies
the conditions above. In particular, all moments can be approximated for polynomially
bounded reward functions. Using the formula V (X f ) = E(X2

f ) − E(Xf )2, we can
also approximate the variance. �


Algorithm. We present a path enumeration algorithm (Algorithm 1) for solving AP-
PROX EXPECT (defined in the previous section), and then show that it terminates and
computes a correct value of r.

In Algorithm 1, since s |= ∃�F by assumption, we know that PM(s |= �F ) > 0,
and therefore:

E(Xf |s |= �F ) =
E(Xf )

PM(s |= �F )
=

E(Xf )
E(XR)

,

where R(ρ) = 1 if ρ ∈ (s |= �F ), and R(ρ) = 0 otherwise. The algorithm tries to
approximate the values of E(Xf ) and E(XR) based on the observation that E(Xf ) =∑∞

i=0

∑
π∈Path=i

F (s) PM(π) · f(π) and E(XR) =
∑∞

i=0

∑
π∈Path=i

F (s) PM(π).
The algorithm maintains four variables: Ef and ER which contain approximations

of the values of E(Xf ) and E(XR); and εf and εR which are bounds on the errors
in the current approximations. During the n th iteration, the values of Ef and ER are
modified by

∑
π∈Path=n

F (s) PM(π) · f(π) and
∑

π∈Path=n
F (s) PM(π). This maintains

the invariant that each time we arrive at line 7, we have

Ef =
n∑

i=0

∑
π∈Path=i

F (s)

PM(π) · f(π), ER =
n∑

i=0

∑
π∈Path=i

F (s)

PM(π). (1)

The algorithm terminates in case two conditions are satisfied:

– F is reached, i.e., ER > 0.
– The difference between the upper and lower bounds Ef+εf

ER
and Ef−εf

ER+εR
on the

conditional expectation (derived in the proof of Theorem 1), is below the error
tolerance ε.



Algorithm 1 – APPROX EXPECT

Input: An instance of the problem as described in Section 3.
Variables: Ef , ER, εf , εR: R

1. n← 0, Ef ← 0, ER ← 0
2. repeat
3. Ef ← Ef +

P
π∈Path=n

F
(s) PM(π) · f(π)

4. ER ← ER +
P

π∈Path=n
F (s) PM(π)

5. εf ← k1 · k2 · (α1 · α2)
n+1/(1− α1 · α2)

6. εR ← k1 · αn+1
1 /(1− α1)

7. n← n + 1

8. until (ER > 0) ∧
“

Ef +εf

ER
− Ef−εf

ER+εR
< ε
”

9. return
“

Ef−εf

ER+εR

”
Observe that the parameters (α1, k1) and (α2, k2) are required by Algorithm 1, and

hence they should be computable for the Markov chains to be analyzed by the algorithm.
This is possible for the classes of Markov chains we consider in this paper.

Theorem 1. Algorithm 1 terminates and returns a correct value of r.

Proof. Clearly, each time the algorithm is about to execute line 7, the values of E f and
ER are described by (1). The error in Ef as an approximation to E(Xf ) is thus

|E(Xf ) − Ef | =

∣∣∣∣∣∣
∞∑

i=n+1

∑
π∈Path=i

F (s)

PM(π)·f(π)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∞∑
i=n+1

k2 · αi
2

∑
π∈Path=i

F (s)

PM(π)

∣∣∣∣∣∣
≤
∣∣∣∣∣

∞∑
i=n+1

k1 · k2 · αi
1 · αi

2

∣∣∣∣∣ = k1 · k2 · (α1 · α2)n+1/(1 − α1 · α2) = εf .

Here, the first equality follows by definition, and the inequalities follow from the fact
that f is exponentially bounded and M is eager.

The inequality |E(XR)−ER| ≤ εR is obtained similarly. By assumption, α1 ·α2 <
1 and α2 < 1, so limn→∞ εf = limn→∞ εR = 0. This implies that the algorithm
terminates.

Now, we show correctness of the algorithm. It is clear that 0 ≤ ER ≤ E(XR) since
ER increases each iteration. Hence, we have the two inequalities Ef − εf ≤ E(Xf ) ≤
Ef +εf and ER ≤ E(XR) ≤ ER +εR. If ER > 0, we can invert the second inequality
and multiply it with the first to obtain

Ef − εf

ER + εR
≤ E(Xf )

E(XR)
≤ Ef + εf

ER
.

Hence, when the algorithm terminates, Ef−εf

ER+εR
is a correct value of r.

Remark 1. If reachability is decidable in the underlying transition system (as for the
classes of Markov chains we consider in this paper), we can explicitly check whether
the condition s |= ∃�F is satisfied before running the algorithm. �




Remark 2. When computing the sums over Path =n
F (s) on lines 3 and 4, the algorithm

can use either breadth-first search or depth-first search to find the paths in the transition
system. Breadth-first search has the advantage that it computes Path =n

F (s) explicitly,
which can be reused in the next iteration to compute Path =n+1

F (s). With depth-first
search, on the other hand, the search has to be restarted from s in each iteration, but it
only requires memory linear in n. �


4 Eager Attractors

We consider Markov chains that contain a finite attractor, and prove that certain weak
conditions on the attractor imply eagerness of the Markov chain. Consider a Markov
chain M = (S, P, F ). A set A ⊆ S is said to be an attractor if PM(s |= �A) = 1 for
each s ∈ S. In other words, a run from any state will almost certainly return back to A.
We will only work with attractors that are finite; therefore we assume finiteness (even
when not explicitly mentioned) for all the attractors in the sequel.

Eager Attractors. We say that an attractor A ⊆ S is eager if there is a β < 1 and a
b ≥ 1 s.t. for each s ∈ A and n ≥ 0 it is the case that PM

(
s |= ©

(
�≥nA

))
≤ bβn.

In other words, for every state s ∈ A, the probability of first returning to A in n + 1 (or
more) steps is exponentially bounded in n. We call (β, b) the parameters of A. Notice
that it is not a restriction to have β, b independent of s, since A is finite.

Theorem 2. Let M = (S, P, F ) be a Markov chain that contains an eager attractor
A ⊆ S with parameters (β, b). Then M is eager with respect to any s ∈ A and the
parameters (α, k) of M can be computed.

We devote the rest of this section to the proof of Theorem 2. Fix a state s ∈ A, let
n ≥ 1, and define

Us(n) := PM (s |= �=nF ) .

We will compute an upper bound on Us(n), where the upper bound decreases exponen-
tially with n. To do that, we partition the set of runs in (s |= �=nF ) into two subsets
R1 and R2, and show that both have “low” probability measures:

– R1: the set of runs that visit A “seldom” in the first n steps. Such runs are not
probable since A is eager. In our proof, we use the eagerness of A to compute an
upper bound U 1

s (n) on the measure of R1, where U 1
s (n) decreases exponentially

with n.
– R2: the set of runs that visit A “often” in the first n steps. Each time a run enters a

state in A, it will visit F with a probability, which is bounded from below, before it
returns back to A. The runs of R2 are not probable, since the probability of avoiding
F between the “many” re-visits of A is low. We use this observation to compute an
upper bound U 2

s (n) on the measure of R2, that also decreases exponentially with
n.

A crucial aspect here is to define the border between R1 and R2. We consider a run
to re-visit A often (i.e., belong to the set R2) if the number of re-visits is at least n/c,
where c is a constant, defined later, that only depends on (β, b).



To formalize the above reasoning, we need the following definition. For natural
numbers n, t : 1 ≤ t ≤ n, we define the formula A#

n,t, which is satisfied by an s-run
ρ iff ρn contains exactly t occurrences of elements in A before the last state in ρn, i.e.,
the very last state ρ(n) does not count toward t even if it is in A. Then:

Us(n) = PM (s |= �=nF ) =
n∑

t=1

PM
(
s |= �=nF ∧ A#

n,t

)
= U1

s (n) + U2
s (n),

where

U1
s (n) :=

	n
c 
∑

t=1

PM
(
s |= �=nF ∧ A#

n,t

)
, U2

s (n) :=
n∑

t=	n
c 
+1

PM
(
s |= �=nF ∧ A#

n,t

)
.

Below, we derive our bounds on U 1
s (n) and U 2

s (n).

Bound on U 1
s (n). The proof is based on the following idea. Each run ρ ∈ R 1 makes

a number of visits (say t visits) to A before reaching F . We can thus partition ρ into t
segments, each representing a part of ρ between two re-visits of A. To reason about the
segments of ρ, we need a number of definitions.

For natural numbers 1 ≤ t ≤ n, let n ⊕ t be the set of vectors of positive natural
numbers of the form (x1, . . . , xt) such that x1+ · · ·+xt = n. Intuitively, the number xi

represents the length of the i th segment of ρ. Observe that the set n ⊕ t contains
(
n−1
t−1

)
elements.

For paths π = s0s1 · · · sm and π′ = s′0s
′
1 · · · s′n with sm = s′0, let π • π′ denote the

path π = s0s1 · · · sms′1 · · · s′n. For a set A ⊆ S and v = (x1, . . . , xt) ∈ (n ⊕ t), a run
ρ satisfies A#

n,v if ρn = π1 • π2 • · · · • πt and for each i : 1 ≤ i ≤ t: (i) |πi| = xi, (ii)
πi(0) ∈ A, and (iii) πi(j) �∈ A, for each j : 0 < j < |πi|. Eagerness of M gives the
following bound on the measure of runs satisfying A#

n,v.

Lemma 1. For each n, t : 1 ≤ t ≤ n, v ∈ (n ⊕ t), and s ∈ A, it is the case that
PM

(
s |= A#

n,v

)
≤ btβn−t.

Recalling the definition of U 1
s (n) and using Lemma 1: U 1

s (n) ≤
� n

c
�X

t=1

PM
“
s |= A#

n,t

”
=

�n
c
�X

t=1

X
v∈(n⊕t)

PM
“
s |= A#

n,v

”
≤

� n
c
�X

t=1

X
v∈(n⊕t)

btβn−t =

� n
c
�X

t=1

 
n−1

t−1

!
btβn−t

To bound the last sum, we use the following lemma.

Lemma 2. For all n ≥ 2c, c ≥ 2 and b ≥ 1
�n/c�X
t=1

 
n− 1

t− 1

!
btβn−t ≤

 „
c

c− 1

«
(2c)1/c

„
1

c
+

b

β

«1/c

· β
!n

.

Choose c > max
(
1 + 1

β−1/3−1
, 7, 9

log2 β
,
−3 log( 1

7+b/β)

log β

)
. Define α1 :=

(
c

c−1

)
·(2c)1/c·(

1
c + b

β

)1/c

· β. It is not difficult to prove that we have β < α1 < 1. For n ≥ 2c,

Lemma 2 yields U 1
s (n) ≤ αn

1 . For n < 2c we have U 1
s (n) ≤ bβn−1 ≤ (b/β)βn ≤

(b/β)αn
1 . Let k1 := (b/β) > 1. We obtain, ∀n ∈ N. U 1

s (n) ≤ k1α
n
1 .



Bound on U 2
s (n). Let B be the subset of A from which F is reachable, i.e., B :=

{s ∈ A| s |= ∃�F}. If s ∈ A − B then trivially U 2
s (n) = 0. In the following we

consider the case when s ∈ B. Let w := |B|.
The bound on U 2

s (n) is computed based on the observation that runs in R2 visit A
many times before reaching F . To formalize this, we need a definition. For a natural
number k and sets of states S1, S2, we define

(
s |= Sk

1 Before S2

)
to be the set of s-

runs ρ that make at least k visits to S1 before visiting S2 for the first time. Formally, an
s-run satisfies the formula if there are 0 ≤ i1 < i2 < · · · < ik ≤ n such that ρ(ij) ∈ S1

for each j : 1 ≤ j ≤ k, and ρ(i) �∈ S2 for each i : 0 ≤ i ≤ n. We write S1 Before S2

instead of S1
1 Before S2, Sk

1 Before s2 instead of Sk
1 Before {s2}, and sk

1 Before S2

instead of {s1}k Before S2.

Notice that (s |= �=nF ∧ A#
n,t) = (s |= �=nF ∧B#

n,t) ⊆ (s |= Bt Before F ). It
follows that U 2

s (n) ≤
∑n

t=	n
c 
+1 PM

(
s |= Bt Before F

)
.

Any run from s that makes t visits to B before visiting F must have the following
property. By the Pigeonhole principle there exists at least one state sB ∈ B that is
visited at least �t/w� times before visiting F . This means that

(
s |= Bt Before F

)
⊆
⋃

sB∈B

(
s |= s

�t/w�
B Before F

)
,

and hence

U2
s (n) ≤

n∑
t=	n

c 
+1

∑
sB∈B

PM
(
s |= s

�t/w�
B Before F

)
.

By cutting runs at the first occurrence of sB , we see that PM(s |= s
�t/w�
B Before F ) =

PM(s |= sB Before F ) · PM(sB |= s
�t/w�
B Before F ) and in particular PM(s |=

s
�t/w�
B Before F ) ≤ PM(sB |= s

�t/w�
B Before F ). Consider the runs in the set

(sB |= s
�t/w�
B Before F ). In such a run, there are �t/w� parts that go from sB to sB

and avoid F . The following lemma gives an upper bound on such runs. To capture this
upper bound, we introduce the parameter μ which is defined to be positive and smaller
than the minimal probability, when starting from some s ∈ B, of visiting F before
returning to s. In other words, 0 < μ ≤ mins∈B PM

(
s |= ©(F Before s)

)
. Note that

μ is well-defined since F is reachable from all s ∈ B and μ > 0 since B is finite.

Lemma 3. PM
(
sB |= sx

B Before F
)
≤ (1 − μ)x−1, for each sB ∈ B.

Since μ only needs to be a lower bound, we can assume μ < 1. From Lemma 3 it
follows that

U2
s (n) ≤

n∑
t=	n

c 
+1

∑
sB∈B

(1−μ)�t/w�−1 ≤ w

1 − μ
·

n∑
t=	n

c 
+1

(1 − μ)t/w

=
w

1−μ
· (1−μ)(	

n
c 
+1)/w − (1−μ)(n+1)/w

1−(1−μ)1/w
<

w

(1−μ)(1−(1−μ)1/w)
·
(
(1−μ)

1
cw

)n

.

Let α2 := (1−μ)
1

cw < 1 and k2 := w
(1−μ)(1−(1−μ)1/w)

. Thus ∀n ∈ N. U 2
s (n) ≤ k2α

n
2 .



Remark 3. The reason why we do not use equality in the definition of μ, i.e., define
μ = mins∈B PM

(
s |= ©(F Before s)

)
, is that (as it will later be explained for PLCS)

it is in general hard to compute mins∈B PM
(
s |= ©(F Before s)

)
exactly. However,

we can compute a non-zero lower bound, which is sufficient for the applicability of our
algorithm. �


Eagerness of M with respect to s ∈ A. From the bounds on U 1
s (n) and U 2

s (n), we
derive the parameters (α, k) of (M, s) as follows. Let α3 := max(α1, α2) < 1 and
k3 := k1+k2. Then Us(n) ≤ U1

s (n)+U2
s (n) ≤ k1α

n
1 +k2α

n
2 ≤ (k1+k2)αn

3 = k3α
n
3 .

Finally,

PM
(
s |= �≥nF

)
=

∞∑
i=n

Us(i) ≤ k3
αn

3

1 − α3

Choose α := α3 and k := k3/(1 − α3). It follows that ∀n ∈ N.PM
(
s |= �≥nF

)
≤

kαn. This concludes the proof of Theorem 2. �


4.1 GR-Attractors

We define the class of gambler’s ruin-like attractors or GR-attractors for short, show
that any GR-attractor is also eager (Lemma 4), and that any PLCS contains a GR-
attractor (Lemma 7).

Let M = (S, P, F ) be a Markov chain that contains a finite attractor A ⊆ S. Then
A is called a GR-attractor, if there exists a “distance” function h : S → N and a
constant q > 1/2 such that for any state s ∈ S the following conditions hold.

1. h(s) = 0 ⇐⇒ s ∈ A.
2.
∑

{s′ |h(s′)<h(s)} P (s, s′) ≥ q, for all s with h(s) ≥ 1.
3. P (s, s′) = 0, if h(s′) > h(s) + 1.

Let p := 1 − q. We call (p, q) the parameter of A. Intuitively, h describes the distance
from A. This condition means that, in every step, the distance to A does not increase by
more than 1, and it decreases with probability uniformly > 1/2. In particular, this im-
plies that A is an attractor, i.e., ∀s ∈ S.PM(s |= �A) = 1, but not every attractor has
the distance function. As we will see below, a Markov chain with a GR-attractor gener-
alizes the classical “gambler’s ruin” problem [24], but converges at least as quickly. We
devote the rest of Section 4.1 to show the following Lemma.

Lemma 4. Let M be a Markov chain. Every finite GR-attractor with parameter (p, q)
is an eager attractor with parameters β =

√
4pq and b = 1.

To prove this, we need several auxiliary constructions.
For a state s ∈ S with h(s) = k, we want to derive an upper bound for the probabil-

ity of reaching A in n or more steps. Formally, f(k, n) := suph(s)=k PM
(
s |= �≥nA

)
.

To obtain an upper bound on f(k, n), we relate our Markov chain M to the Markov
chain MG from the gambler’s ruin problem [24], defined as MG = (N, PG, {0}) with
PG(x, x − 1) = q, PG(x, x + 1) = p := 1 − q for x ≥ 1 and PG(0, 0) = 1. Let
g(k, n) := PMG

(
k |= �≥n 0

)
.

The following Lemma shows that f is bounded by g, so that any upper bound for
the gambler’s ruin problem also applies to a GR-attractor.



Lemma 5. If 0 ≤ k ≤ n then f(k, n) ≤ g(k, n).

Next, we give an upper bound for the gambler’s ruin problem.

Lemma 6. For all n ≥ 2, g(1, n) ≤ 3q√
π
(4pq)	

n
2 
.

Proof. (of Lemma 4) Let β :=
√

4pq. For n = 0, we have PM
(
s |= ©

(
�≥nA

))
≤

1 = β0. For n = 1, we have PM
(
s |= ©

(
�≥nA

))
≤ p ≤ β1. For n ≥ 2, Lemma 5

gives PM
(
s |= ©

(
�≥nA

))
≤ p · g(1, n), so by Lemma 6, PM

(
s |= ©

(
�≥nA

))
≤

3pq√
π

(4pq)	
n
2 
 = 3

4
√

π
(4pq)	

n
2 
+1 ≤ 3

4
√

π
(4pq)

n
2 ≤

(√
4pq
)n = βn.

4.2 Probabilistic Lossy Channel Systems

As an example of systems with finite GR-attractors, we consider Probabilistic lossy
channel systems (PLCS). These are probabilistic processes with a finite control unit and
a finite set of channels, each of which behaves as a FIFO buffer which is unbounded
and unreliable in the sense that it can spontaneously lose messages. There exist several
variants of PLCS which differ in how many messages can be lost, with which probabil-
ities, and in which situations. We consider the relatively realistic PLCS model from [6,
13, 29] where each message in transit independently has the probability λ > 0 of being
lost in every step, and the transitions themselves are subject to probabilistic choice.

Remark 4. The definition of PLCS in [6, 13, 29] assumes that messages can be lost only
after discrete steps, but not before them. Thus, since no messages can be lost before the
first discrete step, the set {s ∈ S : s |= ∃�F} of predecessors of a given set F of target
states is generally not upward closed. It is more realistic to assume that messages can
be lost before and after discrete steps, in which case {s ∈ S : s |= ∃�F} is upward
closed. However, for both versions of the definition, it follows easily from the results
in [2] that for any effectively representable set F , the set {s ∈ S : s |= ∃�F} is
decidable. �


In [6, 13, 9], it was shown that each Markov chain induced by a PLCS contains a
finite attractor. Here we show a stronger result.

Lemma 7. Each Markov chain induced by a PLCS contains a GR-attractor.

Proof. For any configuration c, let #c be the number of messages in transit in c. We
define the attractor A as the set of all configurations that contain at most m messages
in transit, for a sufficiently high number m (to be determined). A := {c | #c ≤ m}.
Since there are only finitely many different messages and a finite number of control-
states, A is finite for every fixed m. The distance function h is defined by h(c) :=
max{0, #c − m}. Now we show that h satisfies the requirements for a GR-attractor.
The first condition, h(c) = 0 ⇐⇒ c ∈ A, holds by definition of h and A. The
third condition holds, because, by definition of PLCS, at most one new message can be
added in every single step. Consider now a configuration c with at least m messages. For
the second condition it suffices to show that, for sufficiently large m, the probability of
losing at least two messages in transit is at least q > 1/2 (and thus the new configuration



contains at least one message less than the previous one, since at most one new message
is added). The probability q of losing at least 2 messages (of at least m + 1) satisfies
q ≥ 1− ((1− λ)m+1 + (m + 1)λ(1 − λ)m) = 1− (1 − λ)m(1 + λm)). Since λ > 0,
we can choose m s.t. q > 1/2. It suffices to take m ≥ 2

λ .

Theorem 3. The problem APPROX EXPECT is computable for PLCS.

Proof. By Lemma 7 the Markov chain induced by a PLCS contains a GR-attractor,
which is an eager attractor by Lemma 4. Then, by Theorem 2 the Markov chain is eager
and Algorithm 1 can in principle solve the problem APPROX EXPECT. However, to
apply the algorithm, we first need to know (i.e., compute) the parameters (α, k), or at
least sufficient upper bounds on them.

Given the parameter λ for message loss in the PLCS, we choose the parameter m
and the GR-attractor A such that q > 1/2, as in the proof of Lemma 7. This attractor
is eager with parameters β =

√
4(1 − q)q < 1 and b = 1 by Lemma 4. For any

effectively representable set of target states F of a PLCS, the set {s ∈ S : s |= ∃�F}
is decidable by Remark 4. Thus we can compute B = A ∩ {s ∈ S : s |= ∃�F}
and obtain the parameter w = |B|. Since B is known and finite, we can compute an
appropriate μ, i.e., a μ such that 0 < μ ≤ mins∈B PM

(
s |= ©(F Before s)

)
, by path

exploration. When A, w, μ, β and b are known, we can compute, in turn, c, α 1, k1, α2,
k2, and finally α and k, according to Section 4.

Remark 5. Choosing a larger m (and thus larger attractor A) has advantages and disad-
vantages. The advantage is that a larger m yields a larger q and thus a smaller parameter
β =

√
4pq and thus possibly faster convergence. The disadvantage is that a larger at-

tractor A possibly yields a smaller parameter μ and a larger parameter w (see Section 4)
and both these effects cause slower convergence. �


5 Bounded Coarseness

In this section, we consider the class of Markov chains that are boundedly coarse. We
first give definitions and a proof that boundedly coarse Markov chains are eager with
respect to any state, and then examples of models that are boundedly coarse.

A Markov chain M = (S, P, F ) is boundedly coarse with parameter (β, K) if, for
every state s, either s �|= ∃�F , or PM(s |= �≤KF ) ≥ β.

Lemma 8. If a Markov Chain M is boundedly coarse with parameter (β, K) then it
is eager with respect to all states in M and the eagerness parameter (α, k) can be
computed.

Sufficient Condition. We give a sufficient condition for bounded coarseness. A state s
is said to be of coarseness β if, for each s′ ∈ S, P (s, s′) > 0 implies P (s, s′) ≥ β.
We say that M is of coarseness β if each state is of coarseness β, and M is coarse if
it is of coarseness β, for some β > 0. Notice that if M is coarse then the underlying
transition system is finitely branching; however, the converse is not necessarily true.

A transition system is of span K if for each s ∈ S, either s �|= ∃�F or s |=
∃�≤KF , i.e., either F is unreachable or it is reachable in at most K steps. A transition



system is finitely spanning if it is of span K for some K and a Markov chain is finitely
spanning (of span K) if its underlying transition system is so. The following result is
immediate.

Lemma 9. If a Markov chain is coarse (of coarseness β), and finitely spanning (of span
K), then it is boundedly coarse with parameter (βK , K).

Probabilistic VASS. A Probabilistic Vector Addition System with States (PVASS) (see
[3] for details) is an extended finite-state automaton which operates on a finite set of
variables ranging over the natural numbers. The variables behave as weak counters
(weak in the sense that they are not compared for equality with 0). Furthermore, each
transition has a weight defined by a natural number. A PVASS V induces an (infinite-
state) Markov chain M in a natural way where the states of M are configurations of V
(the local state of the automaton together with the counter values), and the probability
of performing a transition from a given configuration is defined by the weight of the
transition relative to the weights of other transitions enabled in the same configuration.

It was shown in [3] that each Markov chain induced by a PVASS where the set F
is upward closed (with respect to the standard ordering on configurations) is effective,
coarse, and finitely spanning (with the span being computable). This, together with
Lemmas 9 and 8, yields the following theorem.

Theorem 4. APPROX EXPECT is solvable for PVASS with an upward closed set of
final configurations.

Noisy Turing Machines. Noisy Turing Machines (NTMs) were recently introduced by
Asarin and Collins [7]. They study NTMs from a theoretical point of view, considering
the computational power as the noise level tends to zero, but motivate them by practi-
cal applications such as computers operating in a hostile environment where arbitrary
memory bits can change with some small probability. We show that NTMs with a fixed
noise level are boundedly coarse, so by Lemma 8, they induce eager Markov chains.

An NTM is like an M -tape Turing Machine (with a finite control part and a given
final control state), except that prior to a transition, for each cell on each tape, with
probability λ it is subjected to noise. In this case, it changes to one of the symbols in
the alphabet (possibly the same as before) uniformly at random.

An NTM induces a Markov chain M = (S, P, F ) as follows. A state in S is a
triple: the current time, the current control state, and an M -tuple of tape configurations.
A tape configuration is represented as a triple: the head position; a finite word w over
the alphabet representing the contents of all cells visited by the head so far; and a |w|-
tuple of natural numbers, each representing the last point in time when the head visited
the corresponding cell.

These last-visit times allow us to add noise “lazily”: cells not under the head are not
modified. Since it is known when the head last visited each cell, we compensate for the
missing noise by a higher noise probability for the cell under the head. If the cell was
last visited k time units ago, we increase the probability of noise to 1− (1−λ)k, which
is the probability that the cell is subject to noise in any of k steps. Then the last-visit
time for the cell under the head is updated to contain the current time, and the next



configuration is selected according to the behavior of the control part. The final states
F are those where the control state is final.

Lemma 10. The Markov chain induced by a Noisy Turing Machine is coarse and
finitely spanning.

By Lemmas 8, 9, and 10, NTMs are eager, and we have:

Theorem 5. APPROX EXPECT is solvable for NTMs.

Remark 6. A somewhat simpler way to generate a Markov chain from an NTM avoids
the need for a counter per tape cell. Instead, all cells ever visited by a head are subject
to noise in each step. When a cell is visited for the first time, say after k steps, the
probability of noise is increased to 1 − (1 − λ)k. This is an example of a Markov
chain that is boundedly coarse but not coarse (the probability of a successor obtained
by changing n tape cells is λn). �


6 Conclusion, Discussion, and Future Work

We have described a class of discrete Markov chains, called eager Markov chains, for
which the probability of avoiding a defined set of final states F for more than n steps is
bounded by some exponentially decreasing function f(n). Finite-state Markov chains
are trivially eager for any set of final states F .

Our main result is that several well-studied classes of infinite-state Markov chains
are also eager, including PLCS, PVASS, and NTM. Furthermore, the bounding function
f(n) is effectively constructible for Markov chains in these classes.

We have presented a path exploration algorithm for approximating the conditional
expected reward (defined via computable reward functions) up-to an arbitrarily small
error. This algorithm is guaranteed to terminate for any eager Markov chain.

Directions for future work include extending our results to Markov decision pro-
cesses and stochastic games.
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A Proofs of Some Lemmas

Lemma 1. For each n, t : 1 ≤ t ≤ n, v ∈ (n ⊕ t), and s ∈ A, it is the case that
PM

(
s |= A#

n,v

)
≤ btβn−t.

Proof. By induction on t.

Base Case. Suppose that v ∈ (n⊕1). ThenPM
(
s |= A#

n,v

)
= PM

(
s |= ©(�≥n−1A)

)
.

By eagerness of A it follows that PM
(
s |= A#

n,v

)
≤ bβn−1.

Induction Step. If t > 1, let v = (x1, . . . , xt) and let v1 = (x2, . . . , xt). We know that

PM
(
s |= A#

n,v

)
=
∑
s1∈A

PM
(
s |= ©

(
�=x1−1s1

))
· PM

(
s1 |= A#

n−x1,v1

)
.

By the induction hypothesis it follows that PM
(
s1 |= A#

n−x1,v1

)
≤ bt−1βn−x1−(t−1).

This means that

PM
(
s |= A#

n,v

)
≤ bt−1βn−x1−(t−1) ·

∑
s′∈A

PM
(
s |= ©

(
�=x1−1s′

))
= bt−1βn−x1−(t−1) · PM

(
s |= ©

(
�=x1−1A

))
.

By eagerness of A it follows that PM
(
s |= ©

(
�=x1−1A

))
≤ bβx1−1, and hence

PM
(
s |= A#

n,v

)
≤ bt−1βn−x1−(t−1) · bβx1−1 = btβn−t. �


To prove Lemma 2, we need the following auxiliary lemma:

Lemma 11. For all x ≥ 2c and c ≥ 2,(
x

�x/c�

)
<

((
c

c − 1

)
(2c)1/c

)x

.

Proof. We apply Theorem 2.6. of [30] with p := �x/c�, n := 1 and m := x and obtain(
x

�x/c�

)
<

1√
2π

xx+1/2

(x − �x/c�)x−	x/c
+1/2(�x/c�)	x/c
+1/2

≤
(

x

x − �x/c�

)x (
x − �x/c�
�x/c�

)	x/c
√
x

2π(x − �x/c�)�x/c�

≤
(

x

x − x/c

)x

(2c)x/c
√

x

2π(x − x/c)(x/c − 1)

≤
((

c

c − 1

)
(2c)1/c

)x

.

�




Lemma 2. For all n ≥ 2c, c ≥ 2 and b ≥ 1
�n/c�X
t=1

 
n− 1

t− 1

!
btβn−t ≤

 „
c

c− 1

«
(2c)1/c

„
1

c
+

b

β

«1/c

· β
!n

.

Proof.

	n/c
∑
t=1

(
n − 1
t − 1

)
btβn−t

≤ βn

	n/c
∑
t=0

(
n

t

)(
b

β

)t

= βn

	n/c
∑
t=0

(
n

�n/c�

)(
�n/c�

t

)
(n − �n/c�)! (�n/c� − t)!

(n − t)!

(
b

β

)t

= βn

(
n

�n/c�

) 	n/c
∑
t=0

(
�n/c�

t

)⎛⎝	n/c
−t∏
i=1

i

n − �n/c� + i

⎞
⎠( b

β

)t

≤ βn

(
n

�n/c�

) 	n/c
∑
t=0

(
�n/c�

t

)(
1
c

)	n/c
−t(
b

β

)t

= βn

(
n

�n/c�

)(
1
c

)	n/c
(
1 +

bc

β

)	n/c


≤ {lemma 11 with the hypotheses n ≥ 2c and c ≥ 2; b ≥ 1, β < 1 thus b/β > 1}

βn

((
c

c − 1

)
(2c)1/c

)n(1
c

+
b

β

)n/c

=

((
c

c − 1

)
· (2c)1/c ·

(
1
c

+
b

β

)1/c

· β
)n

.

For a sufficiently large c (which depends on b and β), the base is < 1. �


Lemma 3. PM
(
sB |= sx

B Before F
)
≤ (1 − μ)x−1, for each sB ∈ B.

Proof. By induction on x. The base case (when x = 1) is trivial. For the induction step,
we observe that

PM
(
sB |= sx

B Before F
)
≤ PM

(
sB |= s2

B Before F
)
· PM

(
sB |= sx−1

B Before F
)
.

By definition, we know that

PM
(
sB |= s2

B Before F
)

= PM
(
sB |= ©

(
sB Before F

))
≤ (1 − μ).

By the induction hypothesis, we obtain

PM
(
sB |= sx−1

B Before F
)
≤ (1 − μ)x−2.

The result now follows. �




To prove Lemma 5, we first show that g increases in the first parameter:

Lemma 12. ∀j, k, n : 0 ≤ j ≤ k ≤ n =⇒ g(j, n) ≤ g(k, n).

Proof. We show that ∀k, n : 1 ≤ k ≤ n : g(k − 1, n) ≤ g(k, n) which implies the
result. We use induction on n. The base case n = 0 holds because PM(k |= �≥0 0) =
1 for all k. In the induction step we assume n ≥ 1 and consider two cases. If k = 1 then
the result is trivial since g(k − 1, n + 1) = 0. If k ≥ 2, then

g(k − 1, n + 1) = q · g(k − 2, n) + p · g(k, n)
≤ q · g(k − 1, n) + p · g(k + 1, n) = g(k, n + 1),

where the equalities follow from the definition of MG and the inequality from the
induction hypothesis. �

Lemma 5. If 0 ≤ k ≤ n then f(k, n) ≤ g(k, n).

Proof. By induction on n. The base case is trivial, since f(0, 0) = g(0, 0) = 1. For the
induction step, we consider two cases. The case when k = 0 is trivial since f(0, n+1) =
0. Now, we prove the case when k ≥ 1. For any ε > 0, let s be a state such that h(s) = k
and PM

(
s |= �≥n+1A

)
+ ε ≥ f(k, n + 1). Such an s exists by the definition of f .

Then:
f(k, n + 1) − ε
≤ {Definition of s}
PM

(
s |= �≥n+1A

)
= {Definition of GR-attractor, clause 3}∑k−1

j=0

∑
h(s′)=j P (s, s′) · PM

(
s′ |= �≥nA

)
+∑

h(s′)=k P (s, s′) · PM
(
s′ |= �≥nA

)
+∑

h(s′)=k+1 P (s, s′) · PM
(
s′ |= �≥nA

)
≤ {Definition of f}∑k−1

j=0 f(j, n) ·
(∑

h(s′)=j P (s, s′)
)

+

f(k, n) ·
(∑

h(s′)=k P (s, s′)
)

+

f(k + 1, n) ·
(∑

h(s′)=k+1 P (s, s′)
)

≤ {Induction hypothesis and Lemma 12}
g(k − 1, n) ·

(∑k−1
j=0

∑
h(s′)=j P (s, s′)

)
+

g(k + 1, n) ·
(∑

(h(s′)=k)∨(h(s′)=k+1) P (s, s′)
)

≤ {Definition of GR-attractor, clause 3}
g(k − 1, n) ·

(∑k−1
j=0

∑
h(s′)=j P (s, s′)

)
+

g(k + 1, n) ·
(
1 −

∑k−1
j=0

∑
h(s′)=j P (s, s′)

)
≤ {Definition of GR-attractor, clause 2, and Lemma 12}
q · g(k − 1, n) + p · g(k + 1, n)
= {Definition of g and MG}
g(k, n + 1).

Since this holds for arbitrarily small ε > 0, we must have f(k, n+1) ≤ g(k, n+1). �




Lemma 6. For all n ≥ 2, g(1, n) ≤ 3q√
π
(4pq)	

n
2 
.

Proof. The case for n = 1 is trivial. In the following we assume n ≥ 2. It follows from
equation (5.9) in [24] (page 323) that

g(1, n) =
∞∑

x=n

1
x

(
x

x−1
2

)
p

x−1
2 q

x+1
2 ,

where p = 1 − q and the binomial coefficient is interpreted as zero if (x − 1)/2 is not
an integer. Substituting 2m + 1 for x gives

g(1, n) =
∞∑

m=	n/2


1
2m + 1

(
2m + 1

m

)
pmqm+1 =

∞∑
m=	n/2


1
m + 1

(
2m

m

)
pmqm+1.

Since n ≥ 2, we can assume that m ≥ 1. A bound on the binomial coefficient
follows, e.g., from results in [30]:(

2m

m

)
<

1√
π

m− 1
2 22m.

It follows that

g(1, n) ≤ q√
π

∞∑
m=	n/2


m− 3
2 (4pq)m.

Since q > 1/2 we have 4pq < 1. Thus the summands are monotone decreasing in m
and we can conservatively approximate the sum by the integral and obtain

g(1, n) ≤ q√
π

(⌊n

2

⌋− 3
2

(4pq)	
n
2 
 +

∫ ∞

	n
2 


m− 3
2 (4pq)m dm

)
.

Since 4pq < 1 we have log(4pq) < 0. Therefore, standard integration by parts gives
the following upper bound on the integral.∫ ∞

	n
2 


m− 3
2 (4pq)m dm ≤ 2

⌊n

2

⌋− 1
2

(4pq)	
n
2 
.

Thus,

g(1, n) ≤ q√
π

(⌊n

2

⌋− 3
2

(4pq)	
n
2 
 + 2

⌊n

2

⌋− 1
2

(4pq)	
n
2 

)

.

Since n ≥ 2, we have � n
2 �−

3
2 ≤ 1 and �n

2 �−
1
2 ≤ 1 so

g(1, n) ≤ 3q√
π

(4pq)	
n
2 
.

�




Lemma 8. If a Markov Chain M is boundedly coarse with parameter (β, K) then
it is eager with respect to all states in M and the eagerness parameter (α, k) can be
computed.

Proof. Given a Markov chain M = (S, P, F ) that is boundedly coarse with parameter
(β, K), we first show that for each s ∈ S we have PM

(
s |= �>nKF

)
≤ (1 − β)n.

We use induction on n. The base case (with n = 0) is trivial. We consider the induction
step (when n ≥ 0).

PM
(
s |= �>(n+1)KF

)
=

∑
s′∈S−F

PM
(
s |= ©=nKs′ ∧ �>nKF

)
· PM

(
s′ |= �>KF

)
≤ (1 − β) ·

∑
s′∈S−F

PM
(
s |= ©=nKs′ ∧ �>nKF

)
≤ (1 − β) · (1 − β)n = (1 − β)(n+1),

where the first inequality follows from the definition of bounded coarseness and the
second from the induction hypothesis. This concludes the induction proof. For n ≥ 1,

PM
(
s |= �≥nF

)
= PM

(
s |= �>n−1F

)
≤ PM

(
s |= �>	n−1

K 
·KF
)

≤ (1 − β)	
n−1

K 
 ≤ (1 − β)−
K+1

K ((1 − β)
1
K )n

Let α := (1− β)
1
K < 1 and k := (1− β)−

K+1
K ≥ 1. Thus, M is eager with parameter

(α, k). �


Lemma 10. The Markov chain induced by a Noisy Turing Machine is coarse and
finitely spanning.

Proof. (Sketch) For any state s ∈ S, if s |= ∃�F , there must be some path in the control
part that goes from the control state of s to the final control state. Hence there must be
such a path of length bounded by the number N of control states. It is possible that the
symbol under the head will be subject to noise for the next N steps in such a way that
this path is taken. Thus, the Markov chain has span N . Since only M cells are subject
to noise and each happens with probability ≥ λ, each successor has probability ≥
(λ/K)M , where K is the size of the alphabet. Hence, the Markov chain has coarseness
(λ/K)M . �



