
Regular Model Checking without Transducers

(On Efficient Verification of Parameterized Systems)

Parosh Aziz Abdulla1 parosh@it.uu.se,
Giorgio Delzanno2 giorgio@disi.unige.it,

Noomene Ben Henda1 Noomene.BenHenda@it.uu.se, and
Ahmed Rezine1 Rezine.Ahmed@it.uu.se

1 Uppsala University, Sweden
2 Università di Genova, Italy.

Abstract. We give a simple and efficient method to prove safety prop-
erties for parameterized systems with linear topologies. A process in the
system is a finite-state automaton, where the transitions are guarded by
both local and global conditions. Processes may communicate via broad-
cast, rendez-vous and shared variables. The method derives an over-
approximation of the induced transition system, which allows the use of
a simple class of regular expressions as a symbolic representation. Com-
pared to traditional regular model checking methods, the analysis does
not require the manipulation of transducers, and hence its simplicity and
efficiency. We have implemented a prototype which works well on several
mutual exclusion algorithms and cache coherence protocols.

1 Introduction

In this paper, we consider analysis of safety properties for parameterized systems.
Typically, a parameterized system consists of an arbitrary number of finite-
state processes organized in a linear array. The task is to verify correctness of
the system regardless of the number of processes inside the system. Examples
of parameterized systems include mutual exclusion algorithms, bus protocols,
telecommunication protocols, and cache coherence protocols.

One important technique which has been used for verification of parameter-
ized systems is that of regular model checking [22, 3, 7]. In regular model check-
ing, states are represented by words, sets of states by regular expressions, and
transitions by finite automata operating on pairs of states, so called finite-state
transducers. Safety properties can be checked through performing reachability
analysis, which amounts to applying the transducer relation iteratively to the
set of initial states. The main problem with transducer-based techniques is that
they are very heavy and usually rely on several layers of computationally ex-
pensive automata-theoretic constructions; in many cases severely limiting their
applicability. In this paper, we propose a much more light-weight and efficient
approach to regular model checking, and describe its application in the context
of parameterized systems.

In our framework, a process is modeled as a finite-state automaton which
operates on a set of local variables ranging over finite domains. The transitions of
the automaton are conditioned by the local state of the process, values of the local
variables, and by global conditions. A global condition is either universally or
existentially quantified. An example of a universal condition is that all processes
to the left of a given process i should satisfy a property θ. Process i is allowed
to perform the transition only in the case where all processes with indices j < i

satisfy θ. In an existential condition we require that some (rather than all)
processes satisfy θ. In addition, processes may communicate through broadcast,
rendez-vous, and shared variables. Finally, processes may dynamically be created
and deleted during the execution of the system.

The main idea of our method is to consider a transition relation which is an
over-approximation of the one induced by the parameterized system. To do that,
we modify the semantics of universal quantifiers by eliminating the processes
which violate the given condition. For instance in the above example, process i is
always allowed to take the transition. However, when performing the transition,
we eliminate all processes which have indices j < i and which violate the condi-
tion θ. The approximate transition system obtained in this manner is monotonic
with respect to the subword relation on configurations (larger configurations are
able to simulate smaller ones). In fact, it turns out that universal quantification
is the only operation which does not preserve monotonicity and hence it is the
only source of approximation in the model. Since the approximate transition
relation is monotonic, it can be analyzed using symbolic backward reachability
algorithm based on a generic method introduced in [1]. An attractive feature
of this algorithm is that it operates on sets of configurations which are upward
closed with respect to the subword relation. In particular, reachability analysis
can be performed by computing predecessors of upward closed sets, which is
much simpler and more efficient than applying transducer relations on general
regular languages. Also, as a side effect, the analysis of the approximate model
is always guaranteed to terminate. This follows from the fact that the subword
relation on configurations is a well quasi-ordering. The whole verification process
is fully automatic since both the approximation and the reachability analysis are
carried out without user intervention. Observe that if the approximate transition
system satisfies a safety property then we can safely conclude that the original
system satisfies the property, too.

To simplify the presentation, we introduce the class of systems we consider
in a stepwise manner. First, we consider a basic model where we only allow
Boolean local variables together with local and global conditions. We describe
how to derive the approximate transition relation and how to analyze safety
properties for the basic model. Then, we introduce the additional features one
by one. This includes using general finite domains, shared variables, broadcast
and rendez-vous communication, dynamic creation and deletion of processes,
and counters. For each new feature, we describe how to extend the approximate
transition relation and the reachability algorithm in a corresponding manner.

Based on the method, we have implemented a prototype which works well
on several mutual exclusion algorithms and cache coherence protocols, such as
the Bakery and Szymanski algorithms, the Java Meta-locking protocol, the Fu-
turebus+ protocol, German’s directory-based protocol, etc.

Related work Several recent works have been devoted to develop regular model
checking, e.g., [22, 10]; and in particular augmenting regular model checking with
techniques such as widening [7, 31], abstraction [9], and acceleration [3]. All these
works rely on computing the transitive closure of transducers or on iterating
them on regular languages.
A technique of particular interest for parameterized systems is that of counter
abstraction. The idea is to keep track of the number of processes which satisfy
a certain property. In [18] the technique generates an abstract system which is
essentially a Petri net. Counter abstracted models with broadcast communica-
tion are introduced in [15] and proved to be well-structured in [17]. In [11, 12]
symbolic model checking based on real arithmetics is used to verify counter ab-
stracted models of cache coherence protocols enriched with global conditions.
The method works without guarantee of termination. The paper [28] refines the
counter abstraction idea by truncating the counters at the value of 2, and thus
obtains a finite-state abstract system. The method may require manual insertion
of auxiliary program variables for programs that exploit knowledge of process
identifiers (examples of such programs are the mutual exclusion protocols we
consider in this paper). In general, counter abstraction is designed for systems
with unstructured or clique architectures. Our method can cope with this kind
of systems, since unstructured architectures can be viewed as a special case of
linear arrays where the ordering of the processes is not relevant. In [21] and [30],
the authors present a tool for the analysis and the verification of linear param-
eterized hardware systems using the monadic second-order logic on strings.

Other parameterized verification methods are based on reductions to finite-
state models. Among these, the invisible invariants method [4, 27] exploits cut-
off properties to check invariants for mutual exclusion protocols like the Bak-
ery algorithm and German’s protocol. The success of the method depends on
the heuristic used in the generation of the candidate invariant. This method
sometimes (e.g. for German’s protocol) requires insertion of auxiliary program
variables for completing the proof. In [5, 6] finite-state abstractions for verifica-
tion of systems specified in WS1S are computed on-the-fly by using the weakest
precondition operator. The method requires the user to provide a set of pred-
icates on which to compute the abstract model. Heuristics to discover indexed
predicates are proposed in [24] and applied to German’s protocol as well as to
the Bakery algorithm. In contrast to these approaches, we provide a uniform ap-
proximation scheme which is independent on the analyzed system. Environment
abstraction [13] combines predicate abstraction with the counter abstraction.
The technique is applied to the Bakery and Szymanski algorithms. The model
of [13] contains a more restricted form of global conditions than ours, and also
does not include features such as broadcast communication, rendez-vous com-
munication, and dynamic behaviour. Other approaches tailored to snoopy cache

protocols modeled with broadcast communication are presented in [14, 25]. In
[16] German’s directory-based protocol is verified via a manual transformation
into a snoopy protocol. It is important to remark that frameworks for finite-state
abstractions [13] and those based on cutoff properties [4, 27] can be applied to
parameterized systems where each component itself contains counters and other
unbounded data structures. This allows for instance to deal with a model of the
Bakery algorithm which is more concrete (precise) than ours.

Finally, in [29] a parameterized version of the Java Meta-locking algorithm is
verified by means of an induction-based proof technique which requires manual
strengthening of the mutual exclusion invariant.

In summary, our method provides a uniform simple abstraction which allows
fully automatic verification of a wide class of systems. We have been able to verify
all benchmarks available to us from the literature (with the exception of the
Bakery protocol, where we can only model an abstraction of the protocol). The
benchmarks include some programs, e.g. the German protocol and Java Meta-
locking algorithm, which (to our knowledge) have previously not been possible
to verify without user interaction or specialized heuristics. On the negative side,
the current method only allows the verification of safety properties, while most
regular model checking and abstraction-based techniques can also handle liveness
properties.

Outline In the next Section we give some preliminaries and define a basic model
for parameterized systems. Section 3 describes the induced transition system
and introduces the coverability (safety) problem. In Section 4 we define the
over-approximated transition system on which we run our technique. Section 5
presents a generic scheme for deciding coverability. In Section 6 we instantiate the
scheme on the approximate transition system. Section 7 explains how we extend
the basic model to cover features such as shared variables, broadcast and binary
communications, and dynamic creation and deletion of processes. In Section 8 we
report the results of our prototype on a number of mutual exclusion and cache
coherence examples. Finally, in Section 9, we give conclusions and directions for
future work. A detailed description of the case studies can be found in [2].

2 Preliminaries

In this section, we define a basic model of parameterized systems. This model
will be enriched by additional features in Section 7.

For a natural number n, let n denote the set {1, . . . , n}. We use B to denote
the set {true, false} of Boolean values. For a finite set A, we let B(A) denote
the set of formulas which have members of A as atomic formulas, and which are
closed under the Boolean connectives ¬,∧,∨. A quantifier is either universal or
existential. A universal quantifier is of one of the forms ∀LR, ∀L, ∀R. An existential
quantifier is of one of the forms ∃L, ∃R, or ∃LR. The subscripts L, R, and LR

stand for Left, Right, and Left-Right respectively. A global condition over A is of
the form 2θ where 2 is a quantifier and θ ∈ B(A). A global condition is said to
be universal (resp. existential) if its quantifier is universal (resp. existential). We
use G(A) to denote the set of global conditions over A.

Parameterized Systems A parameterized system consists of an arbitrary (but
finite) number of identical processes, arranged in a linear array. Each process is
a finite-state automaton which operates on a finite number of Boolean local
variables. The transitions of the automaton are conditioned by the values of the
local variables and by global conditions in which the process checks, for instance,
the local states and variables of all processes to its left or to its right. A transition
may change the value of any local variable inside the process. A parameterized
system induces an infinite family of finite-state systems, namely one for each size
of the array. The aim is to verify correctness of the systems for the whole family
(regardless of the number of processes inside the system).

A parameterized system P is a triple (Q, X, T), where Q is a set of local
states, X is a set of local variables, and T is a set of transition rules. A transition
rule t is of the form

t :

q

grd → stmt

q′

 (1)

where q, q′ ∈ Q and grd → stmt is a guarded command. Below we give the
definition of a guarded command. A guard is a formula grd ∈ B(X)∪G(X∪Q). In
other words, the guard grd constraints either the values of local variables inside
the process (if grd ∈ B(X)); or the local states and the values of local variables
of other processes (if grd ∈ G(X ∪ Q)). A statement is a set of assignments of
the form x1 = e1; . . . ; xn = en, where xi ∈ X , ei ∈ B, and xi 6= xj if i 6= j. A
guarded command is of the form grd → stmt, where grd is a guard and stmt is
a statement.

Remark We can extend the definition of the transition rule in (1) so that the
grd is a conjunction of formulas in B(X) ∪ G(X ∪ Q). All the definitions and
algorithms which are later presented in this paper can easily be extended to the
more general form. However, for simplicity of presentation, we only deal with
the current form.

3 Transition System

In this section, we first describe the transition system induced by a parameterized
system. Then we introduce the coverability problem.

Transition System A transition system T is a pair (D, =⇒), where D is an
(infinite) set of configurations and =⇒ is a binary relation on D. We use ∗=⇒ to
denote the reflexive transitive closure of =⇒. We will consider several transition
systems in this paper.

First, a parameterized system P = (Q, X, T) induces a transition system
T (P) = (C,−→) as follows. A configuration is defined by the local states of
the processes, and by the values of the local variables. Formally, a local variable
state v is a mapping from X to B. For a local variable state v, and a formula
θ ∈ B(X), we evaluate v |= θ using the standard interpretation of the Boolean

connectives. A process state u is a pair (q, v) where q ∈ Q and v is a local
variable state. Sometimes, abusing notation, we view a process state (q, v) as
a mapping u : X ∪ Q 7→ B, where u(x) = v(x) for each x ∈ X , u(q) = true,
and u(q′) = false for each q′ ∈ Q − {q}. The process state thus agrees with v

on the values of local variables, and maps all elements of Q, except q, to false .
For a formula θ ∈ B(X ∪ Q) and a process state u, the relation u |= θ is then
well-defined. This is true in particular if θ ∈ B(X) .

A configuration c ∈ C is a sequence u1 · · ·un of process states. Intuitively, the
above configuration corresponds to an instance of the system with n processes.
Each pair ui = (qi, vi) gives the local state and the values of local variables of
process i. Notice that if c1 and c2 are configurations then their concatenation
c1 • c2 is also a configuration.

Next, we define the transition relation −→ on the set of configurations as
follows. We will define the semantics of global conditions in terms of two quan-
tifiers ∀ and ∃. For a configuration c = u1 · · ·un and a formula θ ∈ B(X ∪ Q),
we write c |= ∀θ if ui |= θ for each i : 1 ≤ i ≤ n; and write c |= ∃θ if ui |= θ for
some i : 1 ≤ i ≤ n. For a statement stmt and a local variable state v, we use
stmt(v) to denote the local variable state v′ such that v′(x) = v(x) if x does not
occur in stmt; and v′(x) = e if x = e occurs in stmt. Let t be a transition rule of
the form of (1). Consider two configurations c = c1 • u • c2 and c′ = c1 • u′ • c2,

where u = (q, v) and u′ = (q′, v′). We write c
t−→ c′ to denote that the following

three conditions are satisfied:

1. If grd ∈ B(X) then v |= grd, i.e., the local variables of the process in
transition should satisfy grd.

2. If grd = 2θ ∈ G(X ∪ Q) then one of the following conditions is satisfied:
– 2 = ∀L and c1 |= ∀θ.
– 2 = ∀R and c2 |= ∀θ.
– 2 = ∀LR and c1 |= ∀θ and c2 |= ∀θ.
– 2 = ∃L and c1 |= ∃θ.
– 2 = ∃R and c2 |= ∃θ.
– 2 = ∃LR and either c1 |= ∃θ or c2 |= ∃θ.

In other words, if grd is a global condition then the rest of the processes
should satisfy θ (in a manner which depends on the type of the quantifier).

3. v′ = stmt(v).

We use c −→ c′ to denote that c
t−→ c′ for some t ∈ T .

Safety Properties In order to analyze safety properties, we study the cover-
ability problem defined below. Given a parameterized system P = (Q, X, T), we
assume that, prior to starting the execution of the system, each process is in
an (identical) initial process state uinit = (qinit , vinit). In the induced transition
system T (P) = (C,−→), we use Init to denote the set of initial configurations,
i.e., configurations of the form uinit · · ·uinit (all processes are in their initial
states). Notice that this set is infinite.

We define an ordering on configurations as follows. Given two configurations,
c = u1 · · ·um and c′ = u′

1 · · ·u
′
n, we write c � c′ to denote that c is a subword

of c′, i.e., there is a strictly monotonic3 injection h from the set m to the set n

such that ui = u′
h(i) for each i : 1 ≤ i ≤ m.

A set of configurations D ⊆ C is upward closed (with respect to the order
�) if c ∈ D and c � c′ implies c′ ∈ D. For sets of configurations D, D′ ⊆ C we
use D −→ D′ to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′. The
coverability problem for parameterized systems is defined as follows:

PAR-COV

Instance

– A parameterized system P = (Q, X, T).
– An upward closed set CF of configurations.

Question Init ∗−→ CF ?

It can be shown, using standard techniques (see e.g. [32, 19]), that checking safety
properties (expressed as regular languages) can be translated into instances of the
coverability problem. Therefore, checking safety properties amounts to solving
PAR-COV(i.e., to the reachability of upward closed sets).

4 Approximation

In this section, we introduce an over-approximation of the transition relation of
a parameterized system.

In Section 3, we mentioned that each parameterized system P = (Q, X, T)
induces a transition system T (P) = (C,−→). A parameterized system P also
induces an approximate transition system A(P) = (C, ;), where the set C of
configurations is identical to the one in T (P). We define ;= (−→ ∪ ;1), where
−→ is the transition relation defined in Section 3, and ;1, which reflects the
approximation of universal quantifiers, is defined as follows. For a configuration
c, and a formula θ ∈ B(X ∪Q), we use c⊖θ to denote the maximal configuration
c′ (with respect to �) such that c′ � c and c′ |= ∀θ. In other words, we derive
c′ from c by deleting all process states which do not satisfy θ. Consider two
configurations c = c1•u•c2 and c′ = c′1•u′•c′2, where u = (q, v) and u′ = (q′, v′).
Let t be a transition rule of the form of (1), such that grd = 2θ is a universal

global condition. We write c
t
;1 c′ to denote that the following conditions are

satisfied:

1. if 2 = ∀L, then c′1 = c1 ⊖ θ and c′2 = c2.

2. if 2 = ∀R, then c′1 = c1 and c′2 = c2 ⊖ θ.

3. if 2 = ∀LR, then c′1 = c1 ⊖ θ and c′2 = c2 ⊖ θ.

4. v′ = stmt(v).

We use c ; c′ to denote that c
t

; c′ for some t ∈ T . We define the coverability
problem for the approximate system as follows:

3 h : m → n strictly monotonic means: i < j ⇒ h(i) < h(j) for all i, j : 1 ≤ i < j ≤ m.

APRX-PAR-COV

Instance

– A parameterized system P = (Q, X, T).
– An upward closed set CF of configurations.

Question Init ∗
; CF ?

Since −→⊆;, a negative answer to APRX-PAR-COV implies a negative
answer to PAR-COV.

5 Generic Scheme

In this section, we recall a generic scheme from [1] for performing symbolic
backward reachability analysis.

Assume a transition system (D, =⇒) with a set Init of initial states. We
will work with a set of constraints defined over D. A constraint φ denotes a
potentially infinite set of configurations (i.e. [[φ]] ⊆ D). For a finite set Φ of
constraints, we let [[Φ]] =

⋃

φ∈Φ [[φ]].
We define an entailment relation ⊑ on constraints, where φ1 ⊑ φ2 iff [[φ2]] ⊆

[[φ1]]. For sets Φ1, Φ2 of constraints, abusing notation, we let Φ1 ⊑ Φ2 denote
that for each φ2 ∈ Φ2 there is a φ1 ∈ Φ1 with φ1 ⊑ φ2. Notice that Φ1 ⊑ Φ2

implies that [[Φ2]] ⊆ [[Φ1]] (although the converse is not true in general).
For a constraint φ, we let Pre(φ) be a finite set of constraints, such that

[[Pre(φ)]] = {c| ∃c′ ∈ [[φ]] . c =⇒ c′}. In other words Pre(φ) characterizes the set
of configurations from which we can reach a configuration in φ through the
application of a single transition rule. For our class of systems, we will show that
such a set always exists and is in fact computable. For a set Φ of constraints, we
let Pre(Φ) =

⋃

φ∈Φ Pre(φ). Below we present a scheme for a symbolic algorithm

which, given a finite set ΦF of constraints, checks whether Init ∗=⇒ [[ΦF]].
In the scheme, we perform a backward reachability analysis, generating a

sequence Φ0 ⊒ Φ1 ⊒ Φ2 ⊒ · · · of finite sets of constraints such that Φ0 = ΦF , and
Φj+1 = Φj ∪Pre(Φj). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates
when we reach a point j where Φj ⊑ Φj+1. Notice that the termination condition
implies that [[Φj]] = (

⋃

0≤i≤j [[Φi]]). Consequently, Φj characterizes the set of all

predecessors of [[ΦF]]. This means that Init ∗=⇒ [[ΦF]] iff (Init
⋂

[[Φj]]) 6= ∅.
Observe that, in order to implement the scheme (i.e., transform it into an

algorithm), we need to be able to (i) compute Pre; (ii) check for entailment
between constraints; and (iii) check for emptiness of Init

⋂

[[φ]] for a given con-
straint φ. A constraint system satisfying these three conditions is said to be
effective. Moreover, in [1], it is shown that termination is guaranteed in case the
constraint system is well quasi-ordered (WQO) with respect to ⊑, i.e., for each
infinite sequence φ0, φ1, φ2, . . . of constraints, there are i < j with φi ⊑ φj .

6 Algorithm

In this section, we instantiate the scheme of Section 5 to derive an algorithm
for solving APRX-PAR-COV. We do that by introducing an effective and well
quasi-ordered constraint system.

Throughout this section, we assume a parameterized system P = (Q, X, T)
and the induced approximate transition system A(P) = (C, ;). We define a
constraint to be a finite sequence θ1 · · · θm where θi ∈ B(X ∪ Q). Observe that
for any constraints φ1 and φ2, their concatenation φ1 • φ2 is also a constraint.
For a constraint φ = θ1 · · · θm and a configuration c = u1 · · ·un, we write c |= φ

to denote that there is a strictly monotonic injection h from the set m to the
set n such that uh(i) |= θi for each i : 1 ≤ i ≤ m. Given a constraint φ, we let
[[φ]] = {c ∈ C| c |= φ}. Notice that if φ = θ1 · · · θm and some θi is unsatisfiable
then [[φ]] is empty. Such a constraint can therefore be safely discarded if it arises
in the algorithm.

An aspect of our constraint system is that each constraint characterizes a
set of configurations which is upward closed with respect to �. Conversely (by
Higman’s Lemma [20]), any upward closed set CF of configurations can be char-
acterized as [[ΦF]] where ΦF is a finite set of constraints. In this manner, APRX-

PAR-COV is reduced to checking the reachability of a finite set of constraints.
Below we show effectiveness and well quasi-ordering of our constraint system,

meaning that we obtain an algorithm for solving APRX-PAR-COV.

Pre For a constraint φ′, we define Pre(φ′) =
⋃

t∈T Pret (φ
′), i.e., we compute

the set of predecessor constraints with respect to each transition rule t ∈ T .
In the following, assume t to be a transition rule of the form (1). To compute
Pret (φ

′), we define first the function [t] on X ∪ Q as follows: for each x ∈ X ,
[t](x) = stmt(x) if x occurs in stmt and [t](x) = x otherwise. For each q′′ ∈ Q,
[t](q′′) = true if q′′ = q′, and false otherwise. For θ ∈ B(X ∪ Q), we use θ[t] to
denote the formula obtained from θ by substituting all occurrences of elements
in θ by their corresponding [t]-images.

Now, we define two operators, ⊗ and ⊕, which we use to capture the effects of
universal and existential quantifiers when computing Pre. We use ⊗ to handle
universal quantifiers. For a constraint φ = θ1 · · · θm and a θ ∈ B(X ∪ Q), we
define φ ⊗ θ to be the constraint (θ1 ∧ θ) · · · (θm ∧ θ). We use ⊕ to deal with
existential quantifiers. For a constraint φ = θ1 · · · θm and a θ ∈ B(X ∪ Q), we
define φ⊕ θ to be the set of constraints which are of one of the following forms:

– θ1 · · · θi−1(θi ∧ θ)θi+1 · · · θm where 1 ≤ i ≤ m; or
– (θ1 ∧ ¬θ) · · · (θi ∧ ¬θ)θ(θi+1 ∧ ¬θ) · · · (θm ∧ ¬θ) where 0 ≤ i ≤ m + 1.

In the first case, the constraint implies that there is at least one process in the
configuration satisfying θ. In the the second case, the constraint does not imply
the existence of such a process, and therefore the formula θ is added explicitly to
the representation of the constraint. Notice that in the second case the length of
the resulting constraint is larger (by one) than the length of φ. This means that
the lengths of the constraints which arise during the analysis are not a priori
fixed. Nevertheless, termination is still guaranteed by well quasi-ordering of the
constraints.

For a constraint φ′ and a rule t of the form (1), we define Pret (φ
′) to be the

set of all constraints φ such that φ (resp. φ′) is of the form φ1 • θ • φ2 (resp.
φ′

1 • θ′ • φ′
2) and the following conditions are satisfied:

– If grd ∈ B(X) (i.e. grd is a local condition), then θ = θ′[t]∧ grd∧ q, φ1 = φ′
1

and φ2 = φ′
2;

– If grd = 2grd′, where grd′ ∈ B(X ∪Q), then θ = θ′[t]∧ q and depending on
2 the following conditions hold:
• If 2 = ∀L then φ1 = φ′

1 ⊗ grd′ and φ2 = φ′
2.

• If 2 = ∀R then φ1 = φ′
1 and φ2 = φ′

2 ⊗ grd′.
• If 2 = ∀LR then φ1 = φ′

1 ⊗ grd′ and φ2 = φ′
2 ⊗ grd′.

• If 2 = ∃L then φ1 ∈ φ′
1 ⊕ grd′ and φ2 = φ′

2.
• If 2 = ∃R then φ1 = φ′

1 and φ2 ∈ φ′
2 ⊕ grd′.

• If 2 = ∃LR then either φ1 ∈ φ′
1 ⊕ grd′ and φ2 = φ′

2; or φ1 = φ′
1 and

φ2 ∈ φ′
2 ⊕ grd′.

Entailment The following Lemma gives a syntactic characterization which al-
lows computing of the entailment relation.

Lemma 1. For constraints φ = θ1 . . . θm and φ′ = θ′1 . . . θ′n, we have φ ⊑ φ′ iff
there exists a strictly monotonic injection h : m → n such that θ′

h(i) ⇒ θi for
each i ∈ m.

Proof. (⇒) Assume there is no such injection. We derive a configuration c such
that c ∈ [[φ′]] and c 6∈ [[φ]]. To do that, we define the function g on n as follows:
g(1) = 1, g(i + 1) = g(i) if θ′i 6⇒ θg(i), and g(i + 1) = g(i) + 1 if θ′i ⇒ θg(i).
Observe that, since the above mentioned injection does not exist, we have either
g(n) < m, or g(n) = m and θ′n 6⇒ θm. We choose c = u1 · · ·un, where ui is
defined as follows: (i) if θ′i 6⇒ θg(i) then take ui to be any process state such that
ui |= ¬θg(i) ∧ θ′i; and (ii) if θ′i ⇒ θg(i) then take ui to be any process state such
that ui |= θ′i.

(⇐) Assume there exists a strictly monotonic injection h : m → n such that
θ′

h(i) ⇒ θi for each i ∈ m. Let c = u1 . . . up be a configuration in [[φ′]]. It follows

that there exists a strictly monotonic injection h′ : n → p such that uh′(i) |= θ′i
for each i ∈ n. By assumption, for each j ∈ m, we have θ′

h(j) ⇒ θj . Therefore, for

each j ∈ m, uh′◦h(j) |= θj . It is straightforward to check that h′ ◦ h is a strictly
monotonic injection from m to p. It follows that c ∈ [[φ]].

Intersection with Initial States For a constraint φ = θ1 . . . θn, we have
(Init

⋂

[[φ]]) = ∅ iff uinit 2 θi for some i ∈ n.

Termination We show that the constraint system is well quasi-ordered (WQO)
with respect to ⊑. (A,�) is obviously a WQO for any finite set A and any
quasi-order � on A. Let A∗ be the set of words over A, and �∗ be the subword
relation. Higman’s Lemma [20] states that (A∗,�∗) is also a WQO. Take A

to be the quotient sets of B(X ∪ Q) under the equivalence relation. Let � be
the implication relation on formulas in B(X ∪ Q). By lemma 1, the relation ⊑
coincides with �∗. We conclude that the constraint system is a WQO.

7 Extensions

In this section, we add a number of features to the model of Section 2. For each
additional feature, we show how to modify the constraint system of Section 6 in
a corresponding manner.

Shared Variables We assume the presence of a finite set S of Boolean shared
variables that can be read and written by all processes in the system. A guard
may constraint the values of both the shared and the local variables, and a
statement may assign values to the shared variables (together with the local
variables). It is straightforward to extend the definitions of the induced transition
system and the symbolic algorithm to deal with shared variables.

Variables over Finite Domains Instead of Boolean variables, we can use
variables which range over arbitrary finite domains. Below we describe an ex-
ample of such an extension. Other extensions can be carried out in a similar
manner. Let Y be a finite set of variables which range over {0, 1, . . . , k}, for
some natural number k. Let N(A) be the set of formulas of the form x ∼ y

where ∼∈ {<,≤, =, 6=, >,≥} and x, y ∈ Y ∪ {0, 1, . . . , k}. A guard is a for-
mula grd ∈ B(X ∪ N(Y)) ∪ G(X ∪ Q ∪ N(Y)). In other words, the guard grd

may also constraint the values of the variables in Y . A statement may assign
values in {0, 1, . . . , k} to variables in Y (together with assigning values in B
to the Boolean variables). A local variable state is a mapping from X ∪ Y to
B ∪ {0, 1, . . . , k} respecting the types of the variables. The definitions of con-
figurations, the transition relation, and constraints are extended in the obvious
manner. Well quasi-ordering of the constraint system follows in a similar manner
to Section 6, using the fact that variables in Y range over finite domains.

Broadcast In a broadcast transition, an arbitrary number of processes change
states simultaneously. A broadcast rule is a sequence of transition rules of the
following form

2

4

q0

grd
0
→ stmt0

q′0

3

5

2

4

q1

grd
1
→ stmt1

q′1

3

5

∗
2

4

q2

grd
2
→ stmt2

q′2

3

5

∗

· · ·

2

4

qm

grd
m

→ stmtm

q′m

3

5

∗

(2)

where grdi ∈ B(X) for each i : 0 ≤ i ≤ m. Below, we use ti to refer to the
ith rule in the above sequence. The broadcast rule is deterministic in the sense
that either grdi ∧ grdj is not satisfiable or qi 6= qj for each i, j : 1 ≤ i 6=
j ≤ m. The broadcast is initiated by a process, called the initiator, which is
represented by t0 (i.e., the leftmost transition rule). This transition rule has
the same interpretation as in Section 2. That is, in order for the broadcast
transition to take place, the initiator should be in local state q0 and its local
variables should satisfy the guard grd0. After the completion of the broadcast,
the initiator has changed state to q′0 and updated its local variables according
to stmt0. Together with the initiator, an arbitrary number of processes, called
the receptors, change state simultaneously. The receptors are modeled by the
transition rules t1, . . . , tm (each rule being marked by a * to emphasize that an
arbitrary number of receptors may execute that rule). More precisely, if the local
state of a process is qi and its local variables satisfy grdi, then the process changes
its local state to q′i and updates its local variables according to stmti. Notice that
since the broadcast rule is deterministic, a receptor satisfies the precondition of at
most one of the transition rules. Processes which do not satisfy the precondition
of any of the transition rules remain passive during the broadcast. We define a

transition relation −→B to reflect broadcast transitions. The definition of −→B

can be derived in a straightforward manner from the above informal description.
We extend the transition relation −→ defined in Section 3, by taking its union
with −→B. In a similar manner, we extend the approximate transition relation
; (defined in Section 4) by taking its union with −→B . This means that the
introduction of broadcast transitions are interpreted exactly, and thus they do
not add any additional approximation to ; .

We use the same constraint system as the one defined for systems without
broadcast; consequently checking entailment, checking intersection with initial
states, and proving termination are identical to Section 6. Below we show how
to compute Pre. Consider a constraint φ′ = θ′1 · · · θ

′
n and a broadcast rule b of

the above form. We define Preb(φ
′) to be the set of all constraints of the form

θ1 · · · θn such that there is i : 1 ≤ i ≤ n and the following properties are satisfied:

– θi = θ′i[t0] ∧ grd0 ∧ q0. This represents the predecessor state of the initiator.
– For each j : 1 ≤ j 6= i ≤ n, one of the following properties is satisfied:

• θj = θ′j ∧¬((q1 ∧ grd1)∨ (q2 ∧ grd2)∨ · · · ∨ (qm ∧ grdm)). This represents
a passive process (a process other than the initiator, is allowed to be
passive if it does not satisfy the preconditions of any of the rules).

• θj = θ′j [tk]∧grdk∧qk, for some k : 1 ≤ k ≤ m. This represents a receptor.

Binary Communication In binary communication two processes perform a
rendez-vous changing states simultaneously. A rendez-vous rule consists of two
transition rules of the from

q1

grd1 → stmt1
q′1

q2

grd2 → stmt2
q′2

 (3)

where grd1, grd2 ∈ B(X). Binary communication can be treated in a similar
manner to broadcast transitions (here there is exactly one receptor). The model
definition and the symbolic algorithm can be extended in a corresponding way.

Dynamic Creation and Deletion We allow dynamic creation and deletion
of processes. A process creation rule is of the form

·
grd → ·

q′

 (4)

where q′ ∈ Q and grd ∈ B(X). The rule creates a new process whose local state
is q′ and whose local variables satisfy grd. The newly created processes may be
placed anywhere inside the array of processes.

We define a transition relation −→D to reflect process creation transitions
as follows. For configurations c and c′, and a process creation rule d of the form

of (4), we define c
d−→D c′ to denote that c′ is of the form c′1 • u′ • c′2 where

c = c′1 • c′2, u′ = (q′, v′) and v′ |= grd. We use the same constraint system as the
one defined for systems without process creation and deletion. We show how to

compute Pre. Consider a constraint φ′ and a creation rule d of the form of (4).
We define Pred (φ′) to be the set of all constraints φ such that φ′ (resp. φ) is of
the form φ′

1 • θ′ • φ′
2 (resp. φ′

1 • φ′
2) and θ′[t]∧ grd is satisfiable. Notice that θ′[t]

does not change the values of the local variables in θ′.

A process deletion rule is of the form

q

grd → ·
·

 (5)

where q ∈ Q and grd ∈ B(X). The rule deletes a single process whose local state
is q provided that the guard grd is satisfied. The definitions of the transition
system and the symbolic algorithm can be extended in a similarly to the case
with process creation rules. We omit the details here due to shortage of space.

Counters Using deletion, creation, and universal conditions we can simulate
counters, i.e., global unbounded variables which range over the natural numbers.
For each counter c, we use a special local state qc, such that the value of c is
encoded by the number of occurrences of qc in the configuration. Increment and
decrement operations can be simulated using creation and deletion of processes
in local state qc. Zero-testing can be simulated through universal conditions.
More precisely, c = 0 is equivalent to the condition that there is no process in
state qc. This gives a model which is as powerful as Petri nets with inhibitor arcs
(or equivalently counter machines). Observe that the approximation introduced
by the universal condition means that we replace zero-testing (in the original
model) by resetting the counter value to zero (in the approximate model). Thus,
we are essentially approximating the counter machine by the corresponding lossy
counter machine (see [26] for a description of lossy counter machines). In fact, we
can equivalently add counters as a separate feature (without simulation through
universal conditions), and approximate zero-testing by resetting as described
above.

8 Experimental Results

Based on our method, we have implemented a prototype tool and run it on a
collection of mutual exclusion and cache coherence protocols. The results, using
a Pentium M 1.6 Ghz with 1G of memory, are summarized in Tables 1 and 2. For
each of the mutual exclusion protocols, we consider two variants; namely one with
dynamic creation and deletion of processes (marked with a * in Table 1), and
one without. Full details of the examples can be found in [2]. For each example,
we give the number of iterations performed by the reachability algorithm, the
largest number of constraints maintained at any point during the execution of
the algorithm, and the time (in milliseconds). The computation for each example
required less than 15MB of memory.

iter # constr t(ms)

Bakery 2 2 4
Bakery* 2 2 4
Burns 14 71 230
Burns* 9 21 32
Java M-lock 5 24 30
Java M-lock* 5 17 30
Dijkstra 13 150 1700
Dijkstra* 8 57 168
Szymanski 17 334 3880
Szymanski* 17 334 4080

Table 1. Mutual exclusion algorithms

iter # constr t(ms)

Synapse 3 3 4
Berkeley 2 6 8
Mesi 3 8 8
Moesi 1 12 12
Dec Firefly 3 11 16
Xerox P.D 3 20 52
Illinois 5 33 80
Futurebus 7 153 300
German 44 14475 3h45mn
Table 2. Cache coherence protocols

9 Conclusion and Future Work

We have presented a method for verification of parameterized systems where the
components are organized in a linear array. We derive an over-approximation
of the transition relation which allows the use of symbolic reachability analysis
defined on upward closed sets of configurations. Based on the method, we have
implemented a prototype which performs favorably compared to existing tools
on several protocols which implement cache coherence and mutual exclusion.

One direction for future research is to apply the method to other types of
topologies than linear arrays. For instance, in the cache coherence protocols
we consider, the actual ordering on the processes inside the protocol has no
relevance. These protocols fall therefore into a special case of our model where
the system can be viewed as set of processes (without structure) rather than as
a linear array. This indicates that the verification algorithm can be optimized
even further for such systems. Furthermore, since our algorithm relies on a small
set of properties of words which are shared by other data structures, we believe
that our approach can be lifted to a more general setting. In particular we aim
to develop similar algorithms for systems whose behaviours are captured by
relations on trees and on general forms of graphs. This would allow us to extend
our method in order to verify systems such as those in [8, 23].

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and T. Yih-Kuen. General decidability
theorems for infinite-state systems. In Proc. LICS’ 96 11th IEEE Int. Symp. on
Logic in Computer Science, pages 313–321, 1996.

2. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model checking
without transducers (on efficient verification of parameterized systems). Technical
Report 2006-052, Dept. of Information Technology, Uppsala University, Sweden,
Dec. 2006.

3. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Regular model checking made
simple and efficient. In Proc. CONCUR 2002, 13th Int. Conf. on Concurrency
Theory, volume 2421 of Lecture Notes in Computer Science, pages 116–130, 2002.

4. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification
with automatically computed inductive assertions. In Berry, Comon, and Finkel,
editors, Proc. 13th Int. Conf. on Computer Aided Verification, volume 2102 of
Lecture Notes in Computer Science, pages 221–234, 2001.

5. K. Baukus, Y. Lakhnech, and K. Stahl. Verification of parameterized networks.
Journal of Universal Computer Science, 7(2), 2001.

6. K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of a cache
coherence protocol: Safety and liveness. In Proc. VMCAI 2002, pages 317–330,
2002.

7. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large. In Proc.
15th Int. Conf. on Computer Aided Verification, volume 2725 of Lecture Notes in
Computer Science, pages 223–235, 2003.

8. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract tree regular
model checking of complex dynamic data structures. In Proc. 13th Int. Symp. on
Static Analysis, 2006.

9. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In
CAV04, Lecture Notes in Computer Science, pages 372–386, Boston, July 2004.
Springer-Verlag.

10. D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In G. Berry,
H. Comon, and A. Finkel, editors, Computer Aided Verification, volume 2102 of
Lecture Notes in Computer Science, 2001.

11. G. Delzanno. Automatic verification of cache coherence protocols. In Emerson and
Sistla, editors, Proc. 12th Int. Conf. on Computer Aided Verification, volume 1855
of Lecture Notes in Computer Science, pages 53–68. Springer Verlag, 2000.

12. G. Delzanno. Verification of consistency protocols via infinite-state symbolic model
checking. In Proc. FORTE/PSTV 2000, pages 171–186, 2000.

13. H. V. E. Clarke, M. Talupur. Environment abstraction for parameterized verifi-
cation. In Proc. VMCAI ’06, 7th Int. Conf. on Verification, Model Checking, and
Abstract Interpretation, volume 3855 of Lecture Notes in Computer Science, pages
126–141, 2006.

14. E. Emerson and V. Kahlon. Model checking guarded protocols. In Proc. LICS’ 03
19th IEEE Int. Symp. on Logic in Computer Science, Lecture Notes in Computer
Science, 2003.

15. E. Emerson and K. Namjoshi. On model checking for non-deterministic infinite-
state systems. In Proc. LICS’ 98 13th IEEE Int. Symp. on Logic in Computer
Science, pages 70–80, 1998.

16. E. A. Emerson and V. Kahlon. Exact and efficient verification of parameterized
cache coherence protocols. In CHARME 2003, pages 247–262, 2003.

17. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
Proc. LICS’ 99 14th IEEE Int. Symp. on Logic in Computer Science, 1999.

18. S. M. German and A. P. Sistla. Reasoning about systems with many processes.
Journal of the ACM, 39(3):675–735, 1992.

19. P. Godefroid and P. Wolper. Using partial orders for the efficient verification
of deadlock freedom and safety properties. Formal Methods in System Design,
2(2):149–164, 1993.

20. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math.
Soc., 2:326–336, 1952.

21. P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. MOSEL: A flexible toolset
for monadic second-order logic. In E. Brinksma, editor, Proc. TACAS ’97, 3th

Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems,

volume 1217, pages 183–202, Enschede, The Netherlands, 1997. Lecture Notes in
Computer Science.

22. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. Theoretical Computer Science, 256:93–
112, 2001.

23. B. König and V. Kozioura. Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In Proc. TACAS ’06, 12th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, volume 39200
of Lecture Notes in Computer Science, 2006.

24. S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded system
verification. In CAV 2004, pages 135–147, 2004.

25. M. Maidl. A unifying model checking approach for safety properties of parame-
terized systems. In Berry, Comon, and Finkel, editors, Proc. 13th Int. Conf. on
Computer Aided Verification, volume 2102 of Lecture Notes in Computer Science,
pages 324–336, 2001.

26. R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297:347–354, 2003.

27. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible
invariants. In Proc. TACAS ’01, 7th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, volume 2031, pages 82–97, 2001.

28. A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,infinity)-counter abstraction.
In Proc. 14th Int. Conf. on Computer Aided Verification, volume 2404 of Lecture
Notes in Computer Science, 2002.

29. A. Roychoudhury and I. Ramakrishnan. Automated inductive verification of pa-
rameterized protocols. In Proc. 13th Int. Conf. on Computer Aided Verification,
volume 2102 of Lecture Notes in Computer Science, pages 25–37, 2001.

30. C. Topnik, E. Wilhelm, T. Margaria, and B. Steffen. jMosel: A Stand-Alone Tool
and jABC Plugin for M2L(Str). In Model Checking Software: 13th International
SPIN Workshop, Vienna (Austria), volume 3925 of Lecture Notes in Computer
Science, pages 293–298. Springer Verlag, 2006.

31. T. Touili. Regular Model Checking using Widening Techniques. Electronic Notes
in Theoretical Computer Science, 50(4), 2001. Proc. Workshop on Verification of
Parametrized Systems (VEPAS’01), Crete, July, 2001.

32. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. LICS ’86, 1st IEEE Int. Symp. on Logic in Computer Science,
pages 332–344, June 1986.

