31 research outputs found

    Validation and Implementation of a Diagnostic Algorithm for DNA Detection of Bordetella pertussis, B. parapertussis, and B. holmesii in a Pediatric Referral Hospital in Barcelona, Spain

    Get PDF
    This study aimed to validate a comprehensive diagnostic protocol based on real-time PCR for the rapid detection and identification of Bordetella pertussis, Bordetella parapertussis, and Bordetella holmesii, as well as its implementation in the diagnostic routine of a reference children's hospital. The new algorithm included a triplex quantitative PCR (qPCR) targeting IS481 gene (in B. pertussis, B. holmesii, and some Bordetella bronchiseptica strains), pIS1001 (B. parapertussis-specific) and rnase P as the human internal control. Two confirmatory singleplex tests for B. pertussis (ptxA-Pr) and B. holmesii (hIS1001) were performed if IS481 was positive. Analytical validation included determination of linear range, linearity, efficiency, precision, sensitivity, and a reference panel with clinical samples. Once validated, the new algorithm was prospectively implemented in children with clinical suspicion of whooping cough presenting to Hospital Sant Joan de Deu (Barcelona, Spain) over 12 months. Lower limits of detection obtained were 4.4, 13.9, and 27.3 genomic equivalents/ml of sample for IS481 (on B. pertussis), pIS1001 and hIS1001, and 777.9 for ptxA-Pr. qPCR efficiencies ranged from 86.0% to 96.9%. Intra- and interassay variabilities were 4 years old), and 0.2% of samples, respectively. The new algorithm proved to be a useful microbiological diagnostic tool for whooping cough, demonstrating a low rate of other non-pertussis Bordetella species in our surveilled area

    Impact of the bacterial nasopharyngeal microbiota on the severity of genus enterovirus lower respiratory tract infection in children: A case-control study

    Get PDF
    Introduction: Rhinoviruses (RV) and enteroviruses (EV) are among the main causative etiologies of lower respiratory tract infection (LRTI) in children. The clinical spectrum of RV/EV infection is wide, which could be explained by diverse environmental, pathogen-, and host-related factors. Little is known about the nasopharyngeal microbiota as a risk factor or disease modifier for RV/EV infection in pediatric patients. This study describes distinct nasopharyngeal microbiota profiles according to RV/EV LRTI status in children. Methods: Cross-sectional case-control study, conducted at Hospital Sant de Déu (Barcelona, Spain) from 2017 to 2020. Three groups of children <5 years were included: healthy controls without viral detection (Group A), mild or asymptomatic controls with RV/EV infection (Group B), and cases with severe RV/EV infection admitted to the pediatric intensive care unit (PICU) (Group C). Nasopharyngeal samples were collected from participants for viral DNA/RNA detection by multiplex-polymerase chain reaction and bacterial microbiota characterization by 16S rRNA gene sequencing. Results: A total of 104 subjects were recruited (A = 17, B = 34, C = 53). Children's nasopharyngeal microbiota composition varied according to their RV/EV infection status. Richness and diversity were decreased among children with severe infection. Nasopharyngeal microbiota profiles enriched in genus Dolosigranulum were related to respiratory health, while genus Haemophilus was specifically predominant in children with severe RV/EV LRTI. Children with mild or asymptomatic RV/EV infection showed an intermediate profile. Conclusions: These results suggest a close relationship between the nasopharyngeal microbiota and different clinical presentations of RV/EV infection.This project is supported by the Spanish National Health Institute Carlos III (Grant id. PI17/349). Cofunded by European Regional Development Fund/European Social Fund “A way to make Europe”/“Investing in your future.”S

    Concentrations of nitrogen compounds are related to severe rhinovirus infection in infants. A time-series analysis from the reference area of a pediatric university hospital in Barcelona

    Get PDF
    Background: There is scarce information focused on the effect of weather conditions and air pollution on specific acute viral respiratory infections, such as rhinovirus (RV), with a wide clinical spectrum of severity. Objective: The aim of this study was to analyze the association between episodes of severe respiratory tract infection by RV and air pollutant concentrations (NOx and SO2 ) in the reference area of a pediatric university hospital. Methods: An analysis of temporal series of daily values of NOx and SO2 , weather variables, circulating pollen and mold spores, and daily number of admissions in the pediatric intensive care unit (PICU) with severe respiratory RV infection (RVi) in children between 6 months and 18 years was performed. Lagged variables for 0-5 days were considered. The study spanned from 2010 to 2018. Patients with comorbidities were excluded. Results: One hundred and fifty patients were admitted to the PICU. Median age was 19 months old (interquartile range [IQR]: 11-47). No relationship between RV-PICU admissions and temperature, relative humidity, cumulative rainfall, or wind speed was found. Several logistic regression models with one pollutant and two pollutants were constructed but the best model was that which included average daily NOx concentrations. Average daily NOx concentrations were related with the presence of PICU admissions 3 days later (odds ratio per IQR-unit increase: 1.64, 95% confidence interval: 1.20-2.25)). Conclusions: This study has shown a positive correlation between NOx concentrations at Lag 3 and children's PICU admissions with severe RV respiratory infection. Air pollutant data should be taken into consideration when we try to understand the severity of RVis.This project was partially supported by the Spanish National Health Institute Carlos III (Grant id. PI17/349). Desiree Henares received a grant for predoctoral training in research into Health by the Spanish National Health Institute Carlos III (project number: FI17/00248). The funders have not influenced the design or analysis, nor have they had any role inpreparing the manuscript.S

    Comparison of next generation technologies and bioinformatics pipelines for capsular typing of Streptococcus pneumoniae

    Get PDF
    Whole genome sequencing (WGS)-based approaches for pneumococcal capsular typing have become an alternative to serological methods. In silico serotyping from WGS has not yet been applied to long-read sequences produced by third-generation technologies. The objective of the study was to determine the capsular types of pneumococci causing invasive disease in Catalonia (Spain) using serological typing and WGS and to compare the performance of different bioinformatics pipelines using short- and long-read data from WGS. All invasive pneumococcal pediatric isolates collected in Hospital Sant Joan de Déu (Barcelona) from 2013 to 2019 were included. Isolates were assigned a capsular type by serological testing based on anticapsular antisera and by different WGS-based pipelines: Illumina sequencing followed by serotyping with PneumoCaT, SeroBA, and Pathogenwatch vs MinION-ONT sequencing coupled with serotyping by Pathogenwatch from pneumococcal assembled genomes. A total of 119 out of 121 pneumococcal isolates were available for sequencing. Twenty-nine different serotypes were identified by serological typing, with 24F (n = 17; 14.3%), 14 (n = 10; 8.4%), and 15B/C (n = 8; 6.7%) being the most common serotypes. WGS-based pipelines showed initial concordance with serological typing (>91% of accuracy). The main discrepant results were found at the serotype level within a serogroup: 6A/B, 6C/D, 9A/V, 11A/D, and 18B/C. Only one discrepancy at the serogroup level was observed: serotype 29 by serological testing and serotype 35B/D by all WGS-based pipelines. Thus, bioinformatics WGS-based pipelines, including those using third-generation sequencing, are useful for pneumococcal capsular assignment. Possible discrepancies between serological typing and WGS-based approaches should be considered in pneumococcal capsular-type surveillance studies.This study has been funded in part by Fondo Europeo de Desarrollo Regional (FEDER) and the Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII) through the project "PI19/00104" (Principal Investigator: C.M.A.), the predoctoral Contract for Training in Research into Health “FI17/00248” (Recipient: D.H.), and the grant “PID2020–119298RB-I00“ (Recipient: J.Y.). CMA also received a research grant from Pfizer laborato ries and Fundación Godia paid to the Sant Joan de Déu foundation. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.S

    Lower Respiratory Tract Infection and Genus Enterovirus in Children Requiring Intensive Care: Clinical Manifestations and Impact of Viral Co-Infections

    Get PDF
    Infection by rhinovirus (RV) and enterovirus (EV) in children ranges from asymptomatic infection to severe lower respiratory tract infection (LRTI). This cohort study evaluates the clinical impact of RV/EV species, alone or in codetection with other viruses, in young children with severe LRTI. Seventy-one patients aged less than 5 years and admitted to the Paediatric Intensive Care Unit (PICU) of a reference children's hospital with RV or EV (RV/EV) LRTI were prospectively included from 1/2018 to 3/2020. A commercial PCR assay for multiple respiratory pathogens was performed in respiratory specimens. In 22/71, RV/EV + respiratory syncytial virus (RSV) was found, and 18/71 had RV/EV + multiple viral detections. Patients with single RV/EV detection required invasive mechanical ventilation (IMV) as frequently as those with RSV codetection, whereas none of those with multiple viral codetections required IMV. Species were determined in 60 samples, 58 being RV. No EV-A, EV-C, or EV-D68 were detected. RV-B and EV-B were only found in patients with other respiratory virus codetections. There were not any associations between RV/EV species and severity outcomes. To conclude, RV/EV detection alone was observed in young children with severe disease, while multiple viral codetections may result in reduced clinical severity. Differences in pathogenicity between RV and EV species could not be drawn.This project is supported by the Spanish National Health Institute Carlos III (Grant id. PI17/349). DH received a grant for predoctoral training in research into Health by the Spanish National Health Institute Carlos III (project number: FI17/00248). DH also received a grant from Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC) for a research stay. The funders have not influenced the design or analysis, nor have they had any role in preparing the manuscript.S

    The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study.

    Full text link
    We aimed to assess the duration of nasopharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA persistence in adults self-confined at home after acute infection; and to identify the associations of SARS-CoV-2 persistence with respiratory virus co-detection and infection transmission. A cross-sectional intra-household study was conducted in metropolitan Barcelona (Spain) during the time period of April to June 2020. Every adult who was the first family member reported as SARS-CoV-2-positive by reverse transcription polymerase chain reaction (RT-PCR) as well as their household child contacts had nasopharyngeal swabs tested by a targeted SARS-CoV-2 RT-PCR and a multiplex viral respiratory panel after a 15 day minimum time lag. Four-hundred and four households (404 adults and 708 children) were enrolled. SARS-CoV-2 RNA was detected in 137 (33.9%) adults and 84 (11.9%) children. Rhinovirus/Enterovirus (RV/EV) was commonly found (83.3%) in co-infection with SARS-CoV-2 in adults. The mean duration of SARS-CoV-2 RNA presence in adults' nasopharynx was 52 days (range 26-83 days). The persistence of SARS-CoV-2 was significantly associated with RV/EV co-infection (adjusted odds ratio (aOR) 9.31; 95% CI 2.57-33.80) and SARS-CoV-2 detection in child contacts (aOR 2.08; 95% CI 1.24-3.51). Prolonged nasopharyngeal SARS-CoV-2 RNA persistence beyond the acute infection phase was frequent in adults quarantined at home during the first epidemic wave; which was associated with RV/EV co-infection and could enhance intra-household infection transmission

    GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction

    Get PDF
    Background We previously described increased levels of growth and differentiation factor 15 (GDF-15) in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21). To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction. Methods We analysed 59 serum samples from 48 children with mitochondrial disease, 19 samples from children with other neuromuscular diseases and 33 samples from aged-matched healthy children. GDF-15 and FGF-21 circulating levels were determined by ELISA. Results Our results showed that in children with mitochondrial diseases GDF-15 levels were on average increased by 11-fold (mean 4046pg/ml, 1492 SEM) relative to healthy (350, 21) and myopathic (350, 32) controls. The area under the curve for the receiver-operating-characteristic curve for GDF-15 was 0.82 indicating that it has a good discriminatory power. The overall sensitivity and specificity of GDF-15 for a cut-off value of 550pg/mL was 67.8% (54.4%-79.4%) and 92.3% (81.5%-97.9%), respectively. We found that elevated levels of GDF-15 and or FGF-21 correctly identified a larger proportion of patients than elevated lev- els of GDF-15 or FGF-21 alone. GDF-15, as well as FGF-21, mRNA expression and protein secretion, were significantly induced after treatment of myotubes with oligomycin and that levels of expression of both factors significantly correlated. Conclusions Our data indicate that GDF-15 is a valuable serum quantitative biomarker for the diagnosis of mitochondrial diseases in children and that measurement of both GDF-15 and FGF-21 improves the disease detection ability of either factor separately. Finally, we demonstrate for the first time that GDF-15 is produced by skeletal muscle cells in response to mitochon- drial dysfunction and that its levels correlate in vitro with FGF-21 level

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.

    Get PDF
    BACKGROUND The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    Exploring the nasopharyngeal microbiota composition in infants with whooping cough: a test-negative case-control study

    Full text link
    Purpose The purpose of this study was to characterize the nasopharyngeal microbiota of infants with possible and confirmed pertussis compared to healthy controls. Methods This prospective study included all infants <1 year with microbiologically confirmed diagnosis of pertussis attended at a University Hospital over a 12-month period. For each confirmed case, up to 2 consecutive patients within the same age range and meeting the clinical case definition of pertussis but testing PCR-negative were included as possible cases. A third group of asymptomatic infants (healthy controls) were also included. Nasopharyngeal microbiota was characterized by sequencing the V3-V4 region of the 16S rRNA gene. Common respiratory DNA/RNA viral co-infection was tested by multiplex PCR. Results Twelve confirmed cases, 21 possible cases and 9 healthy controls were included. Confirmed whooping cough was primarily driven by detection of Bordetella with no other major changes on nasopharyngeal microbiota. Possible cases had limited abundance or absence of Bordetella and a distinctive microbiota with lower bacterial richness and diversity and higher rates of viral co-infection than both confirmed cases and healthy controls. Bordetella reads determined by 16S rRNA gene sequencing were found in all 12 confirmed cases (100%), 3 out of the 21 possible cases (14.3%) but in any healthy contr

    Nasopharyngeal bacterial load as a marker for rapid and easy diagnosis of invasive pneumococcal disease in children from Mozambique: Supporting data for the manuscript results

    Get PDF
    Current diagnostic methods for detection of Streptococcus pneumoniae in children with suspected invasive pneumococcal disease have limitations of accuracy, timeliness, and patient convenience. This study aimed to determine the performance of pneumococcal load quantified with a real-time polymerase-chain reaction in nasopharyngeal samples to diagnose invasive pneumococcal disease in children
    corecore