51 research outputs found

    BMPing up endocardial angiogenesis to generate coronary vessels.

    Get PDF
    Understanding how coronary vessels develop is important for designing better strategies to repair ischemic hearts. In this issue of Developmental Cell, D'Amato et al. report that BMP2 and CXCL12/CXCR4 act sequentially on endocardial cells to drive coronary angiogenesis and artery morphogenesis.S

    Pericyte dynamics in the mouse germinal matrix angiogenesis.

    Get PDF
    Germinal matrix-intraventricular hemorrhage (GM-IVH) is the most devastating neurological complication in premature infants. GM-IVH usually begins in the GM, a highly vascularized region of the developing brain where glial and neuronal precursors reside underneath the lateral ventricular ependyma. Previous studies using human fetal tissue have suggested increased angiogenesis and paucity of pericytes as key factors contributing to GM-IVH pathogenesis. Yet, despite its relevance, the mechanisms underlying the GM vasculature's susceptibility to hemorrhage remain poorly understood. To gain better understanding on the vascular dynamics of the GM, we performed a comprehensive analysis of the mouse GM vascular endothelium and pericytes during development. We hypothesize that vascular development of the mouse GM will provide a good model for studies of human GM vascularization and provide insights into the role of pericytes in GM-IVH pathogenesis. Our findings show that the mouse GM presents significantly greater vascular area and vascular branching compared to the developing cortex (CTX). Analysis of pericyte coverage showed abundance in PDGFRβ-positive and NG2-positive pericyte coverage in the GM similar to the developing CTX. However, we found a paucity in Desmin-positive pericyte coverage of the GM vasculature. Our results underscore the highly angiogenic nature of the GM and reveal that pericytes in the developing mouse GM exhibit distinct phenotypical and likely functional characteristics compared to other brain regions which might contribute to the high susceptibility of the GM vasculature to hemorrhage.S

    Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations.

    Get PDF
    Previously considered passive support cells, mural cells-pericytes and vascular smooth muscle cells-have started to garner more attention in disease research, as more subclassifications, based on morphology, gene expression, and function, have been discovered. Central nervous system (CNS) arteriovenous malformations (AVMs) represent a neurovascular disorder in which mural cells have been shown to be affected, both in animal models and in human patients. To study consequences to mural cells in the context of AVMs, various animal models have been developed to mimic and predict human AVM pathologies. A key takeaway from recently published work is that AVMs and mural cells are heterogeneous in their molecular, cellular, and functional characteristics. In this review, we summarize the observed perturbations to mural cells in human CNS AVM samples and CNS AVM animal models, and we discuss various potential mechanisms relating mural cell pathologies to AVMs.This work was supported by the Ohio University Neuroscience Program Confocal Graduate Assistantship and College of Arts and Sciences Graduate Student Research Fund grant to SN; ISCIII and FEDER European institutions through Fondo de Investigación en Salud (FIS) project PI21/ 01844 to AL; NIH R15 NS111376 to CN; and 2020-T1/BMD19985 mod.1 grant funded by “Atracción de Talento Investigador” call from Comunidad de Madrid to HC The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant CEX 2020-001041-S funded by MICIN/AEI/10.13039/501100011033).S

    Notch-mediated cellular interactions between vascular cells.

    Get PDF
    Vessel formation and differentiation to a proper hierarchical vasculature requires a coordinated effort from endothelial and mural cells. Over the last decade Notch was identified as a key player in this process by promoting vascular arterialization and modulating endothelial tip-stalk phenotypes. Recent work has identified that Notch fine-tunes the diverse endothelial phenotypes through regulation of canonical cell-cycle and metabolism regulators, such as ERK and Myc. During arterialization, Notch signaling inhibits the cell-cycle and metabolism of endothelial cells which coincides with the acquisition of arterial identity. During angiogenesis, the same molecular machinery prevents the hypermitogenic arrest and excessive sprouting of vessels. Notch also signals in pericytes and smooth muscle cells promoting vascular coverage and maturation. Here, we will review the latest findings on how Notch signals regulate the differentiation and interactions among vascular cells during organ development and homeostasis.Rui Benedito’s laboratory was supported by the European Research Council (ERC) Consolidator Grant AngioUnrestUHD (101001814), the Ministerio de Ciencia e Innovacio´n (PID2020-120252RB-I00) and “la Caixa” Banking Foundation (HR22-00316). Henar Cuervo’s research was supported by the Atraccio´n de Talento funding from the Comunidad Auto´noma de Madrid (2020-T1/BMD-19985).S

    Vascular biology 2014 in Monterey, California: celebrating 20 years of NAVBO

    Get PDF
    A meeting report for Vascular Biology 2014, held in Monterey, California and organized by the North American Vascular Biology Organization (NAVBO)

    Trypanosoma cruzi infection and endothelin-1 cooperatively activate pathogenic inflammatory pathways in cardiomyocytes

    Get PDF
    Trypanosoma cruzi, the causative agent of Chagas' disease, induces multiple responses in the heart, a critical organ of infection and pathology in the host. Among diverse factors, eicosanoids and the vasoactive peptide endothelin-1 (ET-1) have been implicated in the pathogenesis of chronic chagasic cardiomyopathy. In the present study, we found that T. cruzi infection in mice induces myocardial gene expression of cyclooxygenase-2 (Cox2) and thromboxane synthase (Tbxas1) as well as endothelin-1 (Edn1) and atrial natriuretic peptide (Nppa). T. cruzi infection and ET-1 cooperatively activated the Ca(2+)/calcineurin (Cn)/nuclear factor of activated T cells (NFAT) signaling pathway in atrial myocytes, leading to COX-2 protein expression and increased eicosanoid (prostaglandins E(2) and F(2α), thromboxane A(2)) release. Moreover, T. cruzi infection of ET-1-stimulated cardiomyocytes resulted in significantly enhanced production of atrial natriuretic peptide (ANP), a prognostic marker for impairment in cardiac function of chagasic patients. Our findings support an important role for the Ca(2+)/Cn/NFAT cascade in T. cruzi-mediated myocardial production of inflammatory mediators and may help define novel therapeutic targets

    Nonimmune cells contribute to crosstalk between immune cells and inflammatory mediators in the innate response to Trypanosoma cruzi infection

    Get PDF
    Chagas myocarditis, which is caused by infection with the intracellular parasite Trypanosoma cruzi, remains the major infectious heart disease worldwide. Innate recognition through toll-like receptors (TLRs) on immune cells has not only been revealed to be critical for defense against T. cruzi but has also been involved in triggering the pathology. Subsequent studies revealed that this parasite activates nucleotide-binding oligomerization domain- (NOD-)like receptors and several particular transcription factors in TLR-independent manner. In addition to professional immune cells, T. cruzi infects and resides in different parenchyma cells. The innate receptors in nonimmune target tissues could also have an impact on host response. Thus, the outcome of the myocarditis or the inflamed liver relies on an intricate network of inflammatory mediators and signals given by immune and nonimmune cells. In this paper, we discuss the evidence of innate immunity to the parasite developed by the host, with emphasis on the crosstalk between immune and nonimmune cell responses

    PDGFRβ-P2A-CreERT2 mice: a genetic tool to target pericytes in angiogenesis.

    Get PDF
    Pericytes are essential mural cells distinguished by their association with small caliber blood vessels and the presence of a basement membrane shared with endothelial cells. Pericyte interaction with the endothelium plays an important role in angiogenesis; however, very few tools are currently available that allow for the targeting of pericytes in mouse models, limiting our ability to understand their biology. We have generated a novel mouse line expressing tamoxifen-inducible Cre-recombinase under the control of the platelet-derived growth factor receptor β promoter: PDGFRβ-P2A-CreER T2 . We evaluated the expression of the PDGFRβ-P2A-CreER T2 line by crossing it with fluorescent reporter lines and analyzed reporter signal in the angiogenic retina and brain at different time points after tamoxifen administration. Reporter lines showed labeling of NG2+, desmin+, PDGFRβ+ perivascular cells in the retina and the brain, indicating successful targeting of pericytes; however, signal from reporter lines was also observed in a small subset of glial cells both in the retina and the brain. We also evaluated recombination in tumors and found efficient recombination in perivascular cells associated with tumor vasculature. As a proof of principle, we used our newly generated driver to delete Notch signaling in perivascular cells and observed a loss of smooth muscle cells in retinal arteries, consistent with previously published studies evaluating Notch3 null mice. We conclude that the PDGFRβ-P2A-CreER T2 line is a powerful new tool to target pericytes and will aid the field in gaining a deeper understanding of the role of these cells in physiological and pathological settings.S

    Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations

    Get PDF
    Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1(+/-); Notch3(-/-) mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothelial cell quiescence. Accordingly, loss of pericyte function due to Notch deficiency exacerbates endothelial cell activation caused by Notch1 haploinsufficiency. Mice mutant for Notch1 and Notch3 develop arteriovenous malformations and display hallmarks of the ischemic stroke disease CADASIL. Thus, Notch deficiency compromises pericyte function and contributes to vascular pathologies.Peer reviewe
    corecore